...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: an analytical approach
【24h】

Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: an analytical approach

机译:利用微波亮度温度检测南极洲短期地面空气温度变化:一种分析方法

获取原文
获取原文并翻译 | 示例
           

摘要

Because of the importance of detecting climate change signals over Antarctica, we examined the dependence of the snow's effective temperature times its emissivity (brightness temperature) on surface air temperatures over Antarctica. A range of microwave frequencies and various time scales from daily to yearly is considered. Reasonable accuracy of the air temperature should be obtained without including the annual variation of the emissivity. We studied the sensitivity of the inferred air temperature to penetration depth, a determinant parameter for the effective temperature, and used a snow dielectric constant model derived from strong fluctuation theory. Below 10 GHz, the snow cover temperature and layering determine this depth, whereas above 20 GHz, the determinant factor is the snow crystal size; all parameters have an effect at intermediate frequencies. The penetration depth ranges for the Scanning Multichannel Microwave Radiometer (SMMR) channels are the following: 20-40 m at 6.6 GHz, 6-16 m at 10.7 GHz, about 1-5 m at 18 GHz, and 0.1-1.4 m at 37 GHz. Analysis of the effective temperature revealed that the snow effective temperature can explain short-term fluctuations at 37 GHz and annual trends for all SMMR channels. For short-term fluctuations (<10 days), calculations and measurements showed that the brightness temperature at 37 GHz starts to respond immediately to the air temperature changes, even though the time to reach the maximum is delayed by a day or less; furthermore, the amplitude of the resulting fluctuation was sufficiently large to be detectable in most cases. Indeed, short-term fluctuations of the air temperature can clearly be detected from significant variations of the air temperature over 3 days, but small amplitude fluctuations shorter than 1 day will hardly be detectable through the brightness temperature. This limits use of the brightness temperature at 37 GHz, and this is a point to consider for inversion models. Nevertheless, air temperature fluctuations over 2-3 days can be detected; thus, this technique could be used to observe the winter warming periods in Antarctica that often occur, even during cloudy periods.
机译:由于检测南极上空气候变化信号的重要性,我们研究了雪的有效温度乘以其发射率(亮度温度)对南极上空地面温度的依赖性。考虑每天到每年的微波频率范围和各种时间范围。在不包括发射率的年度变化的情况下,应获得合理的气温精确度。我们研究了推断的气温对渗透深度的敏感性(有效温度的决定因素),并使用了从强波动理论推导的雪介电常数模型。低于10 GHz时,积雪温度和分层决定了该深度,而高于20 GHz时,决定因素是雪晶的大小。所有参数都在中频处起作用。扫描多通道微波辐射计(SMMR)通道的穿透深度范围如下:6.6 GHz时为20-40 m,10.7 GHz时为6-16 m,18 GHz时为1-5 m,37时为0.1-1.4 m GHz。对有效温度的分析表明,降雪有效温度可以解释37 GHz处的短期波动以及所有SMMR通道的年度趋势。对于短期波动(<10天),计算和测量表明,即使达到最大温度的时间延迟了一天或更短的时间,37 GHz的亮度温度仍会立即开始响应于空气温度的变化。此外,在大多数情况下,所产生的波动幅度足够大,以至于无法检测到。实际上,可以从3天的气温的显着变化中清楚地检测出空气温度的短期波动,但是短于1天的小幅度波动很难通过亮度温度检测到。这限制了37 GHz亮度温度的使用,这是反演模型要考虑的一点。但是,可以检测到2-3天的气温波动;因此,即使在阴天期间,该技术也可用于观察南极洲经常发生的冬季变暖期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号