首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >EXAMINATION OF THE DIFFERENCE BETWEEN RADIATIVE AND AERODYNAMIC SURFACE TEMPERATURES OVER SPARSELY VEGETATED SURFACES
【24h】

EXAMINATION OF THE DIFFERENCE BETWEEN RADIATIVE AND AERODYNAMIC SURFACE TEMPERATURES OVER SPARSELY VEGETATED SURFACES

机译:稀疏植被表面的辐射和空气动力学表面温度差异的检验

获取原文
获取原文并翻译 | 示例
           

摘要

A four-layer hydrologic model, coupled to a vegetation growth model, has been used to investigate the differences between aerodynamic surface temperature and radiative surface temperature over sparsely vegetated surface. The rationale for the coupling of the two models was to assess the dependency of these differences on changing surface conditions (i.e., growing vegetation). A simulation was carried out for a 3-month period corresponding to a typical growth seasonal cycle of an herbaceous canopy in the Sahel region of West Africa (Goutorbe et al., 1993). The results showed that the ratio of radiative-aerodynamic temperature difference to radiative-air temperature difference was constant for a given day. However, the seasonal trend of this ratio was changing with respect to the leaf area index (LAI). A parameterization involving radiative surface temperature, air temperature, and LAI was then developed to estimate aerodynamic-air temperature gradient, and thus sensible heat flux. This parameterization was validated using data collected over herbaceous site during the Hapex-Sahel experiment. This approach was further advanced by using a radiative transfer model in conjunction with the above models to simulate the temporal behavior of surface reflectances in the visible and the near-infrared spectral bands. The result showed that sensible heat flux can be fairly accurately estimated by combining remotely sensed surface temperature, air temperature, and spectral vegetation index. The result of this study may represent a great opportunity of using remotely sensed data to estimate spatiotemporal variabilities of surface fluxes in arid and semiarid regions. (C) Elsevier Science Inc., 1996. [References: 35]
机译:结合植被生长模型的四层水文模型已用于研究稀疏植被表面的空气动力学表面温度和辐射表面温度之间的差异。两种模型耦合的基本原理是评估这些差异对变化的地表条件(即生长的植被)的依赖性。进行了为期3个月的模拟,对应于西非萨赫勒地区草本冠层的典型生长季节周期(Goutorbe等,1993)。结果表明,辐射空气动力学温差与辐射空气温差之比在一天中是恒定的。但是,该比例的季节性趋势相对于叶面积指数(LAI)有所变化。然后开发了涉及辐射表面温度,空气温度和LAI的参数化方法,以估算空气动力学空气温度梯度,从而估算显热通量。该参数化使用Hapex-Sahel实验期间从草本站点收集的数据进行验证。通过将辐射传输模型与上述模型结合使用来模拟可见光和近红外光谱带中表面反射率的时间行为,从而进一步推进了该方法。结果表明,结合遥感表面温度,空气温度和光谱植被指数可以相当准确地估算显热通量。这项研究的结果可能代表使用遥感数据估算干旱和半干旱地区表面通量的时空变化的巨大机会。 (C)Elsevier Science Inc.,1996年。[参考:35]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号