首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >LAND ATMOSPHERE INTERACTIONS FOR CLIMATE SYSTEM MODELS - COUPLING BIOPHYSICAL, BIOGEOCHEMICAL, AND ECOSYSTEM DYNAMICAL PROCESSES
【24h】

LAND ATMOSPHERE INTERACTIONS FOR CLIMATE SYSTEM MODELS - COUPLING BIOPHYSICAL, BIOGEOCHEMICAL, AND ECOSYSTEM DYNAMICAL PROCESSES

机译:气候系统模型的陆地大气相互作用-生物物理,生物地球化学和生态系统动力学过程的耦合

获取原文
获取原文并翻译 | 示例
           

摘要

The biogeographical distribution of different vegetation types and the physiological status of vegetation are significant controls of energy, water, and CO2 exchanges between, land surfaces and the atmosphere. These exchanges affect local, regional, and global climates, which feedback to affect the biogeography and physiology of the vegetation. Consequently, there is interest in developing a comprehensive land surface scheme that integrates biophysical, biogeochemical, and ecosystem dynamical processes. Land surface process models of energy and moisture exchanges, ecosystem biogeochemistry models, and ecosystem dynamics models share many features. However, these models have been developed independently by groups interested in their respective field not in the integration across fields. Thus, there are important discrepancies among models that will have to be reconciled if an integrative land-atmosphere interaction package is to be developed. In particular, the temporal resolution and biophysical rigor of land surface process models and the links among energy, water, and CO2 exchange make these models the logical model to calculate land-atmosphere CO2 exchange at diurnal to annual time scales. Longer-term exchanges can be simulated by including plant demography and nutrient cycling. Models that combine the biophysical and biogeochemical controls of CO2 exchange help define remote sensing applications important to modeling the seasonal and annual carbon balance of terrestrial ecosystems. Sensitivity analyses with such a model show that the annual production of biomass and the seasonal cycle of CO2 exchange in boreal forests are well approximated merely by knowing the beginning and end of the growing season, absorbed photosynthetically active radiation, foliage nitrogen concentration, and vegetation type. [References: 108]
机译:不同植被类型的生物地理分布和植被的生理状况是对地表与大气之间能量,水和CO2交换的重要控制。这些交换会影响当地,区域和全球气候,这些反馈会影响植被的生物地理和生理。因此,有兴趣开发一种综合了生物物理,生物地球化学和生态系统动力学过程的综合地表方案。能量和水分交换的地表过程模型,生态系统生物地球化学模型和生态系统动力学模型具有许多特征。但是,这些模型是由对各自领域感兴趣而不是对跨领域集成感兴趣的小组独立开发的。因此,如果要开发一个综合的陆-气相互作用套包,就必须调和模型之间的重要差异。特别是,地表过程模型的时间分辨率和生物物理严谨性以及能量,水和CO2交换之间的联系使这些模型成为计算昼夜到年尺度上土地-大气CO2交换的逻辑模型。可以通过包括植物人口统计学和养分循环来模拟长期交换。结合了CO2交换的生物物理和生物地球化学控制的模型有助于定义遥感应用程序,该应用程序对陆地生态系统的季节和年度碳平衡建模非常重要。用这种模型进行的敏感性分析表明,仅通过了解生长季节的开始和结束,吸收的光合有效辐射,叶片氮浓度和植被类型,即可很好地估算北方森林的生物量的年产量和CO2交换的季节周期。 。 [参考:108]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号