...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04
【24h】

Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04

机译:SMEX04期间胡桃沟流域利用遥感观测对根区土壤水分进行建模和同化

获取原文
获取原文并翻译 | 示例
           

摘要

Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimated via assimilation of aircraft-based remotely sensed surface soil moisture into a distributed Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble square root filter (EnSRF) based on a Kalman filtering scheme was used for assimilating the aircraft-based soil moisture observations at a spatial resolution of 800 m x 800 m. The SWAP model inputs were derived from the SSURGO soil database, LAI (Leaf Area Index) data from SMEX04 database, and data from meteorological stations/rain gauges at the WGEW. Model predictions are presented in terms of temporal evolution of soil moisture probability density function at various depths across the WGEW. The assimilation of the remotely sensed surface soil moisture observations had limited influence on the profile soil moisture. More specifically, root zone soil moisture depended mostly on the soil type. Modeled soil moisture profile estimates were compared to field measurements made periodically during the experiment at the ground based soil moisture stations in the watershed. Comparisons showed that the ground-based soil moisture observations at various depths were within +/-1 standard deviation of the modeled profile soil moisture. Density plots of root zone soil moisture at various depths in the WGEW exhibited multi-modal variations due to the uneven distribution of precipitation and the heterogeneity of soil types and soil layers across the watershed. (C) 2007 Elsevier Inc. All rights reserved.
机译:在所有空间尺度(例如点,田地,集水区,流域和区域),根部区域的土壤水分状况都是水循环的重要组成部分。在这项研究中,在2004年土壤水分实验(SMEX04)中研究了亚利桑那州核桃峡谷实验流域(WGEW)根区土壤水分的时空演变。通过将基于飞机的遥感地表土壤水分吸收到分布式土壤-水-大气-植物(SWAP)模型中,估算了根区土壤水分。基于卡尔曼滤波方案的集成平方根滤波器(EnSRF)用于以800 m x 800 m的空间分辨率吸收基于飞机的土壤湿度观测值。 SWAP模型的输入来自SSURGO土壤数据库,来自SMEX04数据库的LAI(叶面积指数)数据以及来自WGEW的气象站/雨量计的数据。模型预测是根据WGEW上各个深度的土壤水分概率密度函数的时间演变提出的。遥感表层土壤水分观测的同化对剖面土壤水分的影响有限。更具体地说,根区土壤水分主要取决于土壤类型。将模型化的土壤水分剖面估计值与在实验过程中在流域地面土壤湿度站定期进行的田间测量结果进行比较。比较表明,在不同深度的地面土壤水分观测值都在模拟剖面土壤水分的+/- 1标准偏差之内。由于降水的不均匀分布以及流域内土壤类型和土壤层的异质性,WGEW中不同深度的根区土壤水分密度图表现出多模式变化。 (C)2007 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号