...
首页> 外文期刊>Lab on a chip >Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device
【24h】

Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device

机译:微流控设备中人内皮细胞和胚胎干细胞衍生的周细胞的三维共培养

获取原文
获取原文并翻译 | 示例
           

摘要

Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × I). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-fS). The TGF-p signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-p signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have developed microengineered three-dimensional vascular structures that can be used as a model to test the effects of drugs and study the interaction between different human vascular cell types. In the future, the model may be integrated into larger tissue constructs to advance the development of organs-on-chips.
机译:片上器官是微工程化的体外组织结构,可用作生理和病理研究的平台。它们提供了类似组织的微环境,在其中可以以受控方式共培养不同的细胞类型,以创建合成的器官模拟物。血管是人体所有组织的组成部分。由于产生的组织将需要血液或营养供应,因此,血管结构的发展是推进芯片上器官领域的重要研究课题。在这里,我们通过将人脐静脉内皮细胞,人胚胎干细胞衍生的周细胞(血管平滑肌细胞的前体)和大鼠尾部胶原蛋白I的混合物注入聚二甲基硅氧烷微流体中,对微通道内的血管组织进行了三维构造通道尺寸为500μm×120μm×1 cm(w×h×I)。在12 h的过程中,细胞将自己组织成一个长管,就像一个遵循通道轮廓的血管。通过共聚焦显微镜对管的形态进行详细检查,发现成熟的内皮细胞单层在细胞-细胞接触处和掺入管状结构的周细胞中具有完整的PECAM-1染色。我们还证明,在抗转化生长因子-β(TGF-fS)的中和抗体存在下,管的形成被破坏了。 TGF-p信号通路对于正常的血管发育至关重要。小鼠发育过程中其任何成分的缺失都会导致血管生成和血管生成缺陷,人类突变已与多种血管遗传疾病相关。在工程化的微血管中,TGF-β信号的抑制导致管的直径更小,曲折度更高,高度让人联想到患有一种称为遗传性出血性毛细血管扩张(HHT)的特殊血管疾病患者的异常血管。总而言之,我们已经开发出微工程化的三维血管结构,可以用作测试药物作用和研究不同人类血管细胞类型之间相互作用的模型。将来,该模型可能会集成到更大的组织构造中,以促进芯片上器官的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号