...
首页> 外文期刊>Nuclear physics news: a publication of NuPECC and EPS-NPB >Toward Applications of β-NMR Spectroscopy in Chemistry and Biochemistry
【24h】

Toward Applications of β-NMR Spectroscopy in Chemistry and Biochemistry

机译:β-NMR光谱在化学和生物化学中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Applications of nuclear spectroscopic techniques are well established in chemistry and biochemistry, where, for example, conventional nuclear magnetic resonance (NMR) spectroscopy is an indispensable analytical tool [1]. NMR is used routinely to identify small organic molecules in quality control, and in more complex research applications to elucidate structure and dynamics of large biomolecules such as proteins and nucleic acids. Additionally, magnetic resonance (MR) scanners are available at most large hospitals for imaging, and it is now even possible to acquire affordable desk top NMR instruments with permanent magnets, aimed at small businesses and educational institutions. However, conventional NMR spectroscopy faces certain limitations, mainly due to: (1) relatively poor sensitivity and (2) the fact that there are elements that are difficult to detect, because of poor NMR response. To overcome the first problem, a variety of hyperpolarization techniques have been developed, reaching nuclear spin polarization in the % range [2], which is far beyond what may be achieved at thermal equilibrium even in strong external magnetic fields at room temperature. β-detected NMR (β-NMR) spectroscopy belongs to this family of specialized NMR techniques, where considerable nuclear spin polarization is created prior to the NMR measurement. The sensitivity of β-NMR spectroscopy is further enhanced, as it is a radioisotope-based technique, exploiting the detection of anisotropic emission of β-particles from the spin polarized nuclei, vide infra, leading to a billion-fold or higher increase in sensitivity as compared to conventional NMR spectroscopy on stable isotopes. In addition to this, some of the elements which are problematic in conventional NMR spectroscopy, such as Mg, Ca, Cu, and Zn, already are or might be accessible with β-NMR spectroscopy [3–5]. Several applications of β-NMR spectroscopy in nuclear, solid state physics, and materials science have been published over the past decades [3–14] and references therein, and with the project described herein, we aim to advance the applications to solution chemistry and biochemistry [5].
机译:核光谱技术的应用在化学和生物化学领域已得到很好的确立,例如,常规的核磁共振(NMR)光谱是必不可少的分析工具[1]。 NMR通常用于质量控制和更复杂的研究应用中,以识别有机小分子,以阐明蛋白质和核酸等大生物分子的结构和动力学。此外,大多数大型医院都可以使用磁共振(MR)扫描仪进行成像,现在甚至可以针对小型企业和教育机构购买带有永磁体的经济型台式NMR仪器。但是,常规NMR光谱法存在某些局限性,这主要是由于:(1)相对较差的灵敏度,以及(2)由于NMR响应较差而存在难以检测的元素。为了克服第一个问题,已经开发了多种超极化技术,使核自旋极化达到%范围[2],甚至在室温下在强外部磁场中也远远超出了在热平衡时可以实现的水平。 β-检测NMR(β-NMR)光谱属于这一类特殊的NMR技术,其中在NMR测量之前会产生大量的核自旋极化。 β-NMR光谱的灵敏度进一步提高,因为它是一种基于放射性同位素的技术,它利用检测自旋极化核的β粒子的各向异性发射(见下文),从而使灵敏度提高了十亿倍甚至更高。与常规NMR光谱相比,具有稳定的同位素。除此之外,某些常规NMR光谱中存在问题的元素,例如Mg,Ca,Cu和Zn,已经可以或可以通过β-NMR光谱获得[3-5]。过去数十年[3-14]及其参考文献中已经发表了β-NMR光谱在核科学,固体物理学和材料科学中的几种应用,并且通过本文描述的项目,我们旨在推动在溶液化学和化学领域的应用。生物化学[5]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号