...
首页> 外文期刊>Biochemistry >CATALYSIS OF OXIDATIVE PROTEIN FOLDING BY MUTANTS OF PROTEIN DISULFIDE ISOMERASE WITH A SINGLE ACTIVE-SITE CYSTEINE
【24h】

CATALYSIS OF OXIDATIVE PROTEIN FOLDING BY MUTANTS OF PROTEIN DISULFIDE ISOMERASE WITH A SINGLE ACTIVE-SITE CYSTEINE

机译:单活性半胱氨酸修饰的二硫键异构酶催化氧化性蛋白折叠

获取原文
获取原文并翻译 | 示例
           

摘要

Protein disulfide isomerase (PDI), a very abundant protein in the endoplasmic reticulum, facilitates the formation and rearrangement of disulfide bends using two nonequivalent redox active-sites, located in two different thioredoxin homology domains [Lyles, M. M., & Gilbert, H. F. (1994) J. Biol. Chem. 269, 30946-30952]. Each dithiol/disulfide active-site contains the thioredoxin consensus sequence CXXC. Four mutants of protein disulfide isomerase were constructed that have only a single active-site cysteine. Kinetic analysis of these mutants show that the first (more N-terminal) cysteine in either active site is essential for catalysis of oxidation and rearrangement during the refolding of reduced bovine pancreatic ribonuclease A (RNase). Mutant active sites with the sequence SGHC show no detectable activity for disulfide formation or rearrangement, even at concentrations of 25 mu M. The second (more C-terminal) cysteine is not essential for catalysis of RNase disulfide rearrangements, but it is essential for catalysis of RNase oxidation, even in the presence of a glutathione redox buffer. Mutant active sites with the sequence CGHS show 12%-50% of the k(cat) activity of wild-type active sites during the rearrangement phase of RNase refolding but <5% activity during the oxidation phase. In addition, mutants with the sequence CGHS accumulate significant levels of a covalent PDI-RNase complex during steady-state turnover while the wild-type enzyme and mutants with the sequence SGHC do not. Since both active-site cysteines are essential for catalysis of disulfide formation, the dominant mechanism for RNase oxidation may involve direct oxidation by the active-site PDI disulfide. Although it is not essential for catalysis of RNase rearrangements, the more C-terminal cysteine does contribute 2-8-fold to the rearrangement activity. A mechanism for substrate rearrangement is suggested in which the second active-site cysteine provides PDI with a way to ''escape'' from covalent intermediates that do not rearrange in a timely fashion. The second active-site cysteine may normally serve the wild-type enzyme as an internal clock that limits the time allowed for intramolecular substrate rearrangements.
机译:蛋白质二硫键异构酶(PDI)是内质网中非常丰富的蛋白质,它利用位于两个不同硫氧还蛋白同源域中的两个非等价氧化还原活性位点促进二硫键的形成和重排[Lyles,MM,&Gilbert,HF(1994) J.Biol。化学269,30946-30952]。每个二硫醇/二硫化物活性位点包含硫氧还蛋白共有序列CXXC。构建了蛋白质二硫键异构酶的四个突变体,它们仅具有一个活性位点半胱氨酸。这些突变体的动力学分析表明,在还原的牛胰核糖核酸酶A(RNase)复性过程中,任一活性位点中的第一个(更多的N端)半胱氨酸对于氧化和重排催化至关重要。即使在浓度为25μM的情况下,具有SGHC序列的突变活性位点也无法检测到二硫键形成或重排的活性。第二个(C端更高)半胱氨酸对于RNase二硫键重排的催化不是必需的,但对催化至关重要即使存在谷胱甘肽氧化还原缓冲液时,RNA酶的氧化序列CGHS的突变活性位点在RNase重折叠的重排阶段显示了野生型活性位点的k(cat)活性的12%-50%,而在氧化阶段却显示了<5%的活性。此外,在稳定状态转换期间,序列CGHS的突变体会积聚大量的共价PDI-RNase复合物,而野生型酶和序列SGHC的突变体则不会。由于两个活性位点半胱氨酸对于催化二硫键的形成都是必不可少的,因此RNase氧化的主要机理可能涉及活性位点PDI二硫键的直接氧化。尽管对于催化RNase重排不是必需的,但更多的C端半胱氨酸确实对重排活性贡献2-8倍。提出了一种底物重排的机制,其中第二个活性位点半胱氨酸为PDI提供了一种逃避未及时重排的共​​价中间体的途径。第二个活性位点半胱氨酸通常可以将野生型酶用作内部时钟,从而限制分子内底物重排的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号