...
首页> 外文期刊>Nanoscale and microscale thermophysical engineering >NEAR-WALL LIQUID LAYERING, VELOCITY SLIP, AND SOLID–LIQUID INTERFACIAL THERMAL RESISTANCE FOR THIN-FILM EVAPORATION IN MICROCHANNELS
【24h】

NEAR-WALL LIQUID LAYERING, VELOCITY SLIP, AND SOLID–LIQUID INTERFACIAL THERMAL RESISTANCE FOR THIN-FILM EVAPORATION IN MICROCHANNELS

机译:微通道内薄膜蒸发的近壁液体分层,速度滑移和固液界面热阻

获取原文
获取原文并翻译 | 示例
           

摘要

Heat transfer and liquid flow near solid–liquid interfaces for evaporating thin films in microchannels were investigated based on the augmented Young-Laplace equation and kinetic theory. A wall-affected nanolayer was used to correlate the Kapitza resistance with the liquid layering and velocity slip for both hydrophilic and hydrophobic surfaces. This nanolayer physical model was developed to show the combined effects of the solid–liquid interfacial temperature slip and the velocity slip on the thin-film evaporation. The results show that the liquid velocity slip elongates the thin-film region and enhances the evaporation. A minimum slip length exists for the extremely wetting case. The Kapitza resistance and nanolayer disordering for hydrophobic surfaces tend to reduce the thin liquid film superheat and overall heat transfer, leading to a larger U-shaped temperature drop. The nanolayer ordering enhances the thin-film evaporation but cannot entirely counteract the Kapitza resistance.
机译:基于增强的Young-Laplace方程和动力学理论,研究了用于蒸发微通道中薄膜的固液界面附近的传热和液体流动。对于亲水性和疏水性表面,均使用壁受影响的纳米层将Kapitza电阻与液体分层和速度滑移相关联。开发该纳米层物理模型以显示固液界面温度滑移和速度滑移对薄膜蒸发的综合影响。结果表明,液体速度滑移拉长了薄膜区域并增强了蒸发。对于极湿的情况,存在最小滑移长度。疏水表面的Kapitza电阻和纳米层无序性倾向于减少液体薄膜的过热和整体传热,从而导致更大的U形温度降。纳米层的有序排列增强了薄膜的蒸发,但不能完全抵消Kapitza电阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号