首页> 外文期刊>Molecular simulation >Assessment of approximate solutions of the quantum-classical Liouville equation for dynamics simulations of quantum subsystems embedded in classical environments
【24h】

Assessment of approximate solutions of the quantum-classical Liouville equation for dynamics simulations of quantum subsystems embedded in classical environments

机译:量子经典Liouville方程的近似解的评估,用于经典环境中嵌入的量子子系统的动力学仿真

获取原文
获取原文并翻译 | 示例
           

摘要

The quantum-classical Liouville equation (QCLE) provides a rigorous approach for modelling the dynamics of systems that can be effectively partitioned into a quantum subsystem and a classical environment. Several surface-hopping algorithms have been developed for solving the QCLE and successfully applied to simple model systems, but simulating the long-time dynamics of complex, realistic systems using these schemes has proven to be computationally demanding. Motivated by the need for computationally efficient algorithms, two approximate solutions of the QCLE, the Poisson bracket mapping equation (PBME) solution and the forward-backward trajectory solution (FBTS), were developed. These solutions involve simple algorithms in which both the quantum and classical degrees of freedom are described in terms of continuous variables and evolve according to classical-like equations of motion. However, since these schemes are approximate, they must be benchmarked against the exact quantum and QCLE surface-hopping solutions for a variety of simple and complex systems to determine the conditions under which they are valid. To illustrate the validity of the PBME and FBTS approaches, we review the results of a simple model for a condensed-phase photo-induced electron transfer and present new results for a realistic model for a proton transfer in a hydrogen-bonded complex dissolved in a polar nanocluster. Overall, the results demonstrate that caution must be taken when applying these approximate methods, since they can manifest non-physical behaviour for systems where a mean-field-like description is not valid.
机译:量子经典的Liouville方程(QCLE)提供了一种严格的方法来对系统动力学建模,该系统可以有效地划分为量子子系统和经典环境。已经开发了几种表面跳变算法来解决QCLE,并成功地将其应用于简单模型系统,但是事实证明,使用这些方案来模拟复杂,现实系统的长时间动态性具有计算要求。出于对计算效率高的算法的需求,开发了QCLE的两个近似解,泊松括号映射方程(PBME)解和前向轨迹解(FBTS)。这些解决方案涉及简单的算法,其中量子和古典自由度均以连续变量的形式描述,并根据类似于古典运动的方程式发展。但是,由于这些方案是近似的,因此必须针对各种简单和复杂的系统,针对确切的量子和QCLE表面跳变解决方案进行基准测试,以确定它们有效的条件。为了说明PBME和FBTS方法的有效性,我们回顾了一个凝聚相光致电子转移的简单模型的结果,并提出了一个现实模型的质子转移在溶解于氢的键合氢中的质子转移的新结果。极性纳米簇。总体而言,结果表明,在应用这些近似方法时必须谨慎,因为对于类似均值场描述无效的系统,它们可能表现出非物理行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号