首页> 外文期刊>Modelling and simulation in materials science and engineering >Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium
【24h】

Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium

机译:晶体可塑性有限元模型与概率元胞自动机的耦合,用于模拟铝中的一次静态再结晶

获取原文
获取原文并翻译 | 示例
       

摘要

The paper presents a two-dimensional approach for simulating primary static recrystallization, which is based on coupling a viscoplastic crystal plasticity finite-element model with a probabilistic kinetic cellular automaton. The crystal plasticity finite-element model accounts for crystallographic slip and for the rotation of the crystal lattice during plastic deformation. The model uses space and time as independent variables and the crystal orientation and the accumulated slip as dependent variables. The ambiguity in the selection of the active slip systems is avoided by using a viscoplastic formulation that assumes that the slip rate on a slip system is related to the resolved shear stress through a power-law relation. The equations are cast in an updated Lagrangian framework. The model has been implemented as a user subroutine in the commercial finite-element code Abaqus. The cellular automaton uses a switching rule that is formulated as a probabilistic analogue of the Linearized symmetric Turnbull kinetic equation for the motion of sharp grain boundaries. The actual decision about a switching event is made using a simple sampling nonMetropolis Monte Carlo step. The automaton uses space and rime as independent variables and the crystal orientation and a stored energy measure as dependent variables. The kinetics produced by the switching algorithm are scaled through the mesh size, the grain boundary mobility, and the driving force data. The coupling of the two models is realized by: translating the state variables used in the finite-element plasticity model into state variables used in the cellular automaton; mapping the finite-element integration point locations on the quadratic cellular automaton mesh; using the resulting cell size, maximum driving force, and maximum grain boundary mobility occurring in the region for determining the length scale, time step, and local switching probabilities in the automaton; and identifying an appropriate nucleation criterion. The coupling method is applied to the two-dimensional simulation of texture and microstructure evolution in a heterogeneously deformed, high-purity aluminium polycrystal during static primary recrystallization, considering local grain boundary mobilities and driving forces. [References: 33]
机译:本文提出了一种模拟初级静态再结晶的二维方法,该方法基于将粘塑性晶体可塑性有限元模型与概率动力学细胞自动机耦合。晶体可塑性有限元模型解释了晶体滑移和塑性变形过程中晶格的旋转。该模型使用空间和时间作为自变量,使用晶体取向和累积滑移作为因变量。通过使用粘塑性公式避免了有效滑移系统选择中的歧义,该公式假定滑移系统上的滑移率与幂律关系与解析剪切应力有关。这些方程式在更新的拉格朗日框架中转换。该模型已在商业有限元代码Abaqus中作为用户子例程实现。元胞自动机使用一个转换规则,该规则被公式化为线性对称Turnbull动力学方程的概率模拟,用于尖锐晶界的运动。关于切换事件的实际决定是通过简单的非大都会蒙特卡洛抽样步骤做出的。自动机使用空间和边缘作为自变量,将晶体取向和存储的能量度量用作因变量。切换算法产生的动力学通过网格尺寸,晶界迁移率和驱动力数据进行缩放。通过将有限元可塑性模型中使用的状态变量转换为元胞自动机中使用的状态变量,可以实现两个模型的耦合。在二次元胞自动机网格上映射有限元积分点位置;使用所产生的单元尺寸,最大驱动力和在该区域中发生的最大晶界迁移率来确定自动机中的长度尺度,时间步长和局部切换概率;并确定适当的成核标准。考虑到局部晶界迁移率和驱动力,将耦合方法应用于静态初次再结晶过程中异质变形,高纯度铝多晶的织构和微观结构演化的二维模拟。 [参考:33]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号