首页> 外文期刊>Modelling and simulation in materials science and engineering >Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures
【24h】

Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures

机译:小规模的破裂和粘附:耐缺陷纳米结构的原子和连续研究

获取原文
获取原文并翻译 | 示例
       

摘要

Once the characteristic size of materials reaches nanoscale, the mechanical properties may change drastically and classical mechanisms of materials failure may cease to hold. In this paper, we focus on joint atomistic-continuum studies of failure and deformation of nanoscale materials. In the first part of the paper, we discuss the size dependence of brittle fracture. We illustrate that if the characteristic dimension of a material is below a critical length scale that can be on the order of several nanometres, the classical Griffith theory of fracture no longer holds. An important consequence of this finding is that materials with nano-substructures may become flaw-tolerant, as the stress concentration at crack tips disappears and failure always occurs at the theoretical strength of materials, regardless of defects. Our atomistic simulations complement recent continuum analysis (Gao et al 2003 Proc. Natl Acad. Sci. USA 100 5597 - 600) and reveal a smooth transition between Griffith modes of failure via crack propagation to uniform bond rupture at theoretical strength below a nanometre critical length. Our results may have consequences for understanding failure of many small-scale materials. In the second part of this paper, we focus on the size dependence of adhesion systems. We demonstrate that optimal adhesion can be achieved by either length scale reduction, or by optimization of the shape of the surface of the adhesion element. We find that whereas change in shape can lead to optimal adhesion strength, those systems are not robust against small deviations from the optimal shape. In contrast, reducing the dimensions of the adhesion system results in robust adhesion devices that fail at their theoretical strength, regardless of the presence of flaws. An important consequence of this finding is that even under the presence of surface roughness, optimal adhesion is possible provided the size of contact elements is sufficiently small. Our atomistic results corroborate earlier theoretical modelling at the continuum scale (Gao and Yao 2004 Proc. Natl Acad. Sci. USA 101 7851 - 6). We discuss the relevance of our studies with respect to nature's design of bone nanostructures and nanoscale adhesion elements in geckos.
机译:一旦材料的特征尺寸达到纳米级,机械性能可能会发生巨大变化,经典的材料失效机制可能会停止。在本文中,我们专注于纳米材料的破坏和变形的联合原子连续谱研究。在本文的第一部分,我们讨论了脆性断裂的尺寸依赖性。我们说明,如果材料的特征尺寸低于临界长度尺度,该尺度可能在几纳米量级,那么经典的格里菲斯断裂理论就不再成立。这一发现的重要结果是,随着裂纹尖端处的应力集中消失并且无论材料有无缺陷,总是以材料的理论强度发生破坏,因此具有纳米亚结构的材料可能变得具有耐缺陷性。我们的原子模拟对最近的连续谱分析进行了补充(Gao等,2003 Proc。Natl Acad。Sci。USA 100 5597-600),并揭示了在理论强度以下(低于纳米临界长度)通过裂纹扩展的格里菲斯失效模式之间的平稳过渡到均匀粘结断裂的平稳过渡。我们的结果可能会对理解许多小型材料的失效产生影响。在本文的第二部分中,我们重点介绍粘附系统的尺寸依赖性。我们证明可以通过减少长度比例或优化粘附元件表面的形状来实现最佳粘附。我们发现,尽管形状变化可以导致最佳的粘合强度,但这些系统在抵抗与最佳形状的微小偏差方面并不稳健。相反,减小粘合系统的尺寸会导致坚固的粘合装置,无论其有无瑕疵,粘合装置都无法达到其理论强度。该发现的重要结果是,即使在存在表面粗糙度的情况下,只要接触元件的尺寸足够小,也可以实现最佳粘附。我们的原子学结果证实了连续尺度上的早期理论建模(Gao和Yao 2004 Proc。Natl Acad。Sci。USA 101 7851-6)。我们讨论壁虎中骨骼纳米结构和纳米级粘附元素的自然设计相关研究的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号