首页> 外文期刊>Modelling and simulation in materials science and engineering >Micromechanics and numerical modelling of the hydrogen-particle-matrix interactions in nickel-base alloys
【24h】

Micromechanics and numerical modelling of the hydrogen-particle-matrix interactions in nickel-base alloys

机译:镍基合金中氢-颗粒-基体相互作用的微力学和数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanics of hydrogen-induced decohesion and subsequent void formation at the interface of an elastic inclusion embedded in a ductile matrix is studied in an effort to understand the micromechanics of hydrogen embrittlement in nickel-base alloys that fail by ductile intergranular fracture initiating at grain boundary carbides. A phenomenological decohesion model calibrated with the use of the thermodynamic theory of Rice (1976), Hirth and Rice (1980), and Rice and Wang (1989) at its 'fast-separation limit' is employed to describe the cohesive properties of the inclusion/matrix interface in the presence of hydrogen. Finite element solution to the transient hydrogen transport through the plastically deforming matrix, the elastic inclusion, and the decohering interface coupled with interfacial debonding and large-strain deformation-in the surrounding matrix is obtained incrementally at a unit cell through an updated Lagrangian formulation scheme. The numerical results are used to analyse: (a) the interaction of hydrogen-induced decohesion with hydrogen-induced matrix softening; (b) the relationship between energy expenditures on bulk deformation and interfacial decohesion; and (c) the importance of parameters such as strain rate and relative magnitude between interfacial and bulk diffusivities on void nucleation at the particle/matrix interface. For material data pertaining to alloy 690, it was found that hydrogen by weakening the interface promotes plastic flow localization in the surrounding matrix. In general, hydrogen was found to decrease both the macroscopic stress and strain at which void initiation commences and reduce the energies expended on bulk deformation and interfacial separation. [References: 71]
机译:研究了氢诱导的脱粘和随后在延性基体中嵌入的弹性夹杂物的界面处形成空隙的机制,以了解镍基合金中氢脆的微力学,这些氢脆是由于在晶界处发生延性晶间断裂而失败的。碳化物。利用莱斯(1976),赫斯和莱斯(1980)以及莱斯和王(1989)的热力学理论在其“快速分离极限”下校准的现象学解聚模型,用于描述夹杂物的内聚性。氢存在下的/基质界面。通过更新的拉格朗日公式在单元格中逐步获得通过塑性变形基体,弹性夹杂物以及与界面解键和大应变变形耦合的脱粘界面的瞬态氢传输的有限元解决方案。数值结果可用于分析:(a)氢致脱粘与氢致基质软化的相互作用; (b)整体变形的能量消耗与界面脱粘之间的关系; (c)参数的重要性,例如应变率和界面扩散率与本体扩散率之间的相对大小,对粒子/矩阵界面处的空核形核有影响。对于与690合金有关的材料数据,发现氢通过削弱界面促进了塑性流动在周围基体中的定位。总的来说,发现氢降低了引发空洞开始的宏观应力和应变,并减少了由于体积变形和界面分离而消耗的能量。 [参考:71]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号