...
首页> 外文期刊>Molecular & cellular biomechanics: MCB >Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps.
【24h】

Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps.

机译:基于Micro-CT的易损斑块破裂的新范例分析:纤维帽中的细胞微钙化。

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we further investigate the new paradigm for the rupture of thin cap fibroatheroma (TCFA) proposed in Vengrenyuk et al. (2006 PNAS 103:14678) using a multilevel micro-CT based 3D numerical modeling. The new paradigm proposes that the rupture of TCFA is due to stress-induced interfacial debonding of cellular--level, 10-20 microm microcalcifications in the fibrous cap proper. Such microcalcifications, which lie below the visibility of current in vivo imaging techniques, were detected for the first time using confocal microscopy and high resolution microcomputed tomography (micro-CT) imaging in Vengrenyuk et al. (2006) In the present study, we use high resolution (7 microm) micro-CT imaging to construct accurate geometries of both these microcalcifications and larger mm size macrocalcifications at the cap shoulders to evaluate their biomechanical stability. The analysis shows that cellular-level calcifications by themselves are not dangerous unless they lie in a region of high background stress. This high level of background stress only occurs in caps whose thickness is < approximately 80 microm. Whereas a spherical microcalcification will increase peak circumferential stress (PCS) by a factor of two, in agreement with previous local analytical solutions, this can be increased several fold by elongated microcalcifications. The most dangerous situation is when a microinclusion appears in close proximity to a region where the PCS is already high. This stress will be substantially increased if the inclusion is elongated. In contrast, macrocalcifications at the cap shoulders are shown to actually increase plaque stability.
机译:在本文中,我们将进一步研究Vengrenyuk等人提出的薄帽纤维化动脉瘤(TCFA)破裂的新范例。 (2006 PNAS 103:14678)使用基于多层微型CT的3D数值建模。新的范式提出TCFA的破裂是由于应力引起的纤维帽固有的细胞水平10-20微米微钙化的界面剥离。在Vengrenyuk等人中,首次使用共聚焦显微镜和高分辨率微计算机断层扫描(micro-CT)成像首次检测到了这种微钙化,这低于当前体内成像技术的能见度。 (2006)在本研究中,我们使用高分辨率(7微米)显微CT成像来构建这些微钙化和大mm尺寸的宏观钙化在帽肩处的精确几何形状,以评估其生物力学稳定性。分析表明,细胞水平的钙化本身并不危险,除非它们位于高背景应力区域。这种高水平的背景应力仅出现在厚度小于约80微米的盖帽中。球形微钙化会将峰值周向应力(PCS)增加两倍,这与先前的局部分析解决方案相符,而细长的微钙化可以将其增加数倍。最危险的情况是当微夹杂物出现在PCS已经很高的区域附近时。如果夹杂物被拉长,则该应力将显着增加。相反,在帽肩处的宏观钙化显示出实际上增加了斑块稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号