...
首页> 外文期刊>Metabolic engineering >Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions.
【24h】

Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions.

机译:溶解氧浓度对大肠杆菌BL21醋酸盐积累和生理的影响,评估不同溶解氧条件下关键基因的转录水平。

获取原文
获取原文并翻译 | 示例
           

摘要

High density growth of Escherichia coli especially in large bioreactors may temporarily expose the cells to oxygen limitation as a result of a local inadequate oxygen supply or intermittently high concentrations of cells and nutrients. Although short, these periods can potentially alter bacterial metabolism, affecting both growth and recombinant proteins production capability, and thus lowering process productivity. When E. coli B (BL21), a lower acetate producing strain, was grown aerobically on high glucose, acetate accumulation was found to be inversely correlated to the dissolved oxygen (DO) levels, reaching 10 g/L at 1%, 4 g/L at 6%, and zero at 30% DO concentration at stationary growth phase. Time-course transcription analysis of several genes involved in glucose and acetate metabolism indicated that the enhanced acetate production at lower DO levels is the result of altered transcription of several key genes. These genes are: the acetate producing gene (poxB), the glyoxylate shunt gene (aceA), the acetate uptake gene (acs), the gluconeogensis and anaplerotic pathways genes, (pckA, ppsA, ppc, and sfcA), the TCA cycle gene (gltA), and the sigma factors 70 and S (rpoD and rpoS). It is suggested that the catabolic repressor/activator Cra is responsible for the bacterial response to different oxygen levels. Oxygen limitation seems to repress the constitutive expression of the glyoxylate shunt and gluconeognesis. In this work, the concept of transition state is proposed to describe the bacterial response to the lower DO concentration.
机译:大肠杆菌的高密度生长,特别是在大型生物反应器中,可能会由于局部氧气供应不足或细胞和营养素浓度高间歇性升高而暂时使细胞暴露于氧气限制之下。尽管时间短,但这些时间可能会改变细菌的代谢,从而影响生长和重组蛋白的生产能力,从而降低加工效率。当大肠杆菌B(BL21)(一种乙酸盐生产较低的菌株)在高葡萄糖条件下有氧生长时,发现乙酸盐积累与溶解氧(DO)水平成反比,在1%,4 g时达到10 g / L / L为6%,固定生长阶段DO为30%时为零。对涉及葡萄糖和乙酸酯代谢的几个基因的时程转录分析表明,在较低的溶解氧水平下乙酸盐产量的增加是几个关键基因转录改变的结果。这些基因是:产生乙酸盐的基因(poxB),乙醛酸分流基因(aceA),乙酸盐吸收基因(acs),糖异生和抗衰老途径基因(pckA,ppsA,ppc和sfcA),TCA循环基因(gltA),以及sigma factor 70和S(rpoD和rpoS)。建议分解代谢阻遏物/活化剂Cra负责细菌对不同氧水平的反应。氧的限制似乎抑制了乙醛酸分流和葡糖异生的组成型表达。在这项工作中,提出了过渡态的概念来描述细菌对较低DO浓度的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号