首页> 外文期刊>Metabolic engineering >Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis
【24h】

Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis

机译:酿酒酵母中工程辅因子和转运机制用于增强乙酰辅酶A和聚酮化合物的生物合成

获取原文
获取原文并翻译 | 示例
           

摘要

Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24 h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48 h, only this coupled approach showed increased acetylCoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Delta zwf1 strain. Carbon was further routed toward TAL production by reducing mitochondria) transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8 g/L), and in combination to 1.4 g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6 g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16 g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds. (C) 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
机译:高滴度和高产率的聚酮化合物的合成对于生产药物和生物可再生化学前体非常重要。在这项工作中,我们设计了酿酒酵母中的辅助因子和转运途径,以增加乙酰基CoA(一种重要的聚酮化合物)。通过过表达修饰的大肠杆菌丙酮酸脱氢酶复合物(PDHm)来接受高度调节的酵母丙酮酸脱氢酶旁路途径,该复合物接受NADP(+)用于乙酰辅酶A的生产。培养24小时后,相对于基础菌株,NADPH / NADP(+)比率增加了3.7倍,相对于天然大肠杆菌PDH的引入,增加了2.2倍。两种大肠杆菌途径均使乙酰辅酶A水平相对于酵母基础菌株提高了约2倍。将PDHm与ZWF1缺失结合以阻断主要的酵母NADPH生物合成途径,会导致NADPH增强12倍,乙酰辅酶A增加2.2倍。在48 h时,只有这种偶联方法显示出乙酰辅酶A水平升高,比基础菌株高3.0倍。在表达非洲菊杂种2-吡酮合酶(2-PS)的啤酒酵母菌株中评估了对聚酮化合物合成的影响,以生产聚酮化合物三乙酸内酯(TAL)。相对于基础菌株的TAL滴度在天然大肠杆菌PDH中仅提高了30%,但在Delta zwf1菌株中,PDHm的滴度提高了3.0倍,PDHm的滴度提高了4.4倍。通过减少丙酮酸和乙酰辅酶A的线粒体运输,将碳进一步传递给TAL生产。基因POR2,MPC2,PDA1或YAT2中的缺失分别比基本菌株的滴度提高了2至3倍(最高0.8 g / L),并增加至1.4 g / L。结合使用两种方法(产生NADPH的乙酰辅酶A途径以及减少的代谢物进入线粒体的通量),最终TAL滴度为1.6 g / L,比非工程酵母菌株高6.4倍,是理论值的35%产量(0.16 g / g葡萄糖),是迄今为止报道的最高水平。这些生物驱动力为提高乙酰辅酶A衍生化合物的高产量生产提供了新途径。 (C)2016国际代谢工程学会。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号