首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal
【24h】

Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

机译:热时效对AISI 316L焊接金属材料性能,应力腐蚀开裂和断裂韧性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 A degrees C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where delta-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 A degrees C), the process is also operative at lower temperatures, at the 561 K (288 A degrees C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of delta-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.
机译:在铸不锈钢,双相不锈钢和高铬铁素体不锈钢中,热老化和随之而来的材料脆化一直是个问题。旋节线分解是众所周知的“ 748 K(475 A摄氏度)脆化”的主要原因,该脆化导致这些材料的延展性和韧性急剧降低。在存在δ铁素体的铸造或锻造不锈钢的焊缝中,该过程也可操作。虽然在748 K(475 A摄氏度)老化数百小时后可能会发生脆化,但该过程还可以在较低的温度下运行,即沸水反应堆(BWR)的561 K(288 A摄氏度)工作温度下。例如,经过数万小时的暴露后,延展性下降。为了了解旋节线分解如何影响316L BWR型管道焊缝金属的材料性能变化,进行了实验程序。该研究包括材料表征,纳米压痕硬度,双环电化学电位动力学活化(DL-EPR),夏比-V,拉伸,SCC裂纹扩展以及根据δ-铁素体含量,时效时间和温度。 316L不锈钢焊接金属在模拟BWR条件下的SCC裂纹扩展速率显示,裂纹扩展速率是未时效焊接材料的大约2倍。原位断裂韧性测量结果表明,与暴露于空气中的相应测试温度相比,暴露于环境中可能导致韧性降低多达40%。材料表征结果表明,旋节线分解是造成空气中测量的材料性能下降的原因,而原位性能下降可能是暴露于高温水环境中吸收的氢的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号