...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath
【24h】

Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

机译:使用Zn-Ti液态金属浴通过破坏性光干涉设计热浸镀锌钢板的颜色

获取原文
获取原文并翻译 | 示例
           

摘要

The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 A degrees C) bath temperature; it was yellow at 814 K +/- 22 K (541 A degrees C +/- 22 A degrees C), violet at 847 K +/- 10 K (574 A degrees C +/- 10 A degrees C), and blue at 873 K +/- 15 K (600 A degrees C +/- 15 A degrees C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.
机译:使用液态Zn-Ti金属浴,空气气氛并控制浴温度作为唯一的实验参数,以可复制的方式调节热浸镀锌钢板的颜色。仅在空气中冷却并浸入含Ti的液态Zn中发现有着色。对于浸入0.15 wt%的含Ti的Zn浴中的样品,在792 K(519 A摄氏度)的浴温以下,颜色保持金属(灰色)状态。在814 K +/- 22 K(541 A +/- 22 A摄氏度)时呈黄色,在847 K +/- 10 K(574 A +/- 10 A摄氏度)时呈紫色,蓝色在873 K +/- 15 K(600 A摄氏度+/- 15 A摄氏度)下。随着浴温的升高,附着的Zn​​-Ti层的厚度从52微米逐渐减小到32微米,而TiO2外部层的厚度从24 nm逐渐增加到69 nm。由于锌浴中少量的铝污染,在外部TiO2层和内部宏观Zn层之间发现了一个薄的(约2 nm)富氧化铝层。事实证明,颜色变化是由形成薄的外部TiO2层控制的。取决于该层的厚度,会出现不同的颜色,这主要是由于可见光对该透明纳米层的破坏性干扰。使用化学热力学,附着力,热流,化学反应动力学,扩散和光学的已知关系,建立了一个复杂的模型来解释结果。复杂的模型能够再现观察结果,并能够根据以下实验参数对热浸镀锌钢样品的颜色做出预测:锌浴的温度和Ti含量,氧含量,压力,温度和冷却气体的流速,钢板的尺寸,将钢板浸入Zn-Ti熔池的速度,钢板在熔池中的停留时间以及从熔池中去除的速度。这些关系对于计划进一步的锌-钛合金彩色热浸镀锌实验和技术将是有价值的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号