...
首页> 外文期刊>Mathematical logic quarterly: MLQ >The Ultrafilter Closure in ZF
【24h】

The Ultrafilter Closure in ZF

机译:ZF中的超滤器关闭

获取原文
获取原文并翻译 | 示例
           

摘要

It is well known that, in a topological space, the open sets can be characterized using filter convergence. In ZF (Zermelo-Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultrafilter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultrafilter Theorem is equivalent to the fact that u(X) = k(X) for every topological space X, where k is the usual Kuratowski closure operator and u is the Ultrafilter Closure with u(X)(A) := {x is an element of X : (there exists U ultrafilter in X)[U converges to x and A is an element of U]}. However, it is possible to built a topological space X for which u(X) not equal k(X), but the open sets are characterized by the ultrafilter convergence. To do so, it is proved that if every set has a free ultrafilter, then the Axiom of Countable Choice holds for families of non-empty finite sets. It is also investigated under which set theoretic conditions the equality u = k is true in some subclasses of topological spaces, such as metric spaces, second countable T-0-spaces or {R}.
机译:众所周知,在拓扑空间中,可以使用滤波器收敛来表征开放集。在ZF(没有选择公理的Zermelo-Fraenkel集合论)中,我们无法用超滤器代替滤器。事实证明,当且仅当超滤定理成立时,超滤收敛才确定每个拓扑空间的开放集。此外,我们还可以证明Ultrafilter定理等同于以下事实:每个拓扑空间X的u(X)= k(X),其中k是通常的Kuratowski闭包算符,而u是具有u(X)的Ultrafilter闭包。 (A):= {x是X的元素:(X中存在U超滤器)[U收敛到x且A是U的元素]}。但是,可以建立一个拓扑空间X,其中u(X)不等于k(X),但是开放集的特征是超滤器收敛。这样做可以证明,如果每个集合都有一个免费的超滤器,那么可数选择公理适用于非空有限集合族。还研究了在设置的理论条件下,u = k在拓扑空间的某些子类中是否成立,例如度量空间,第二可数T-0空间或{R}。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号