...
首页> 外文期刊>Canadian journal of earth sciences >Melting of the continental crust during orogenesis: The thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust
【24h】

Melting of the continental crust during orogenesis: The thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust

机译:造山过程中大陆壳的融化:熔体从下部大陆壳到上部大陆壳的运输所产生的热,流变学和成分后果

获取原文
获取原文并翻译 | 示例
           

摘要

The formation and differentiation of the continental crust occurs at convergent plate margins in accretionary and collisional orogenic belts where sufficient heat is generated to achieve high-grade metamorphism and anatexis. Volumetrically significant H_2O-present melting requires an influx of aqueous fluid along zones of high-strain deformation or via fracture networks, or recycling of the fluid dissolved in melt via melt migration and fluid exsolution during crystallization. In contrast, in "dry" crust, melting occurs via hydrate-breakdown melting reactions at higher temperatures than H_2O-present melting; volumetrically significant melt production requires temperatures above ~800 8C. Melting wets residual grains, and anatectic crust becomes porous at a few vol.% melt. Feedback between deformation and melting creates a dynamic rheological environment; as melt volume increases to the melt connectivity transition, which varies but is around 7 vol.% (see discussion later in the text), melt may escape from the source in the first of several melt-loss events with increasing temperature. Major and accessory phase controls on melt production and melt composition for different pressure-temperature-time paths are evaluated using calculated phase equilibria for average pelite. The pristine to slightly retrogressed condition of peritectic minerals in residual crust requires significant loss of melt from the system. The consequences of melt loss are evaluated here. In residual crust, evidence of melt at the grain scale may be preserved in microstructures, whereas evidence of melt extraction pathways at outcrop scale is recorded by leucosome networks. Strain and anisotropy of permeability control the form of mesoscale melt channels with strong anisotropy promoting high-melt focusing. The sequence of structures observed in nature records a transition from storage to drainage; focused melt flow occurs by dilatant shear failure of low-melt-fraction rocks, leading to the formation of networks of channels that allow accumulation and storage of melt and that form the link for melt flow from grain boundaries to ascent conduits. Melt ascent is via ductile-to-brittle fracture; ductile fractures may propagate along foliation as sills or from dilation or shear bands as dikes. Emplacement of horizontal tabular and wedge-shaped plutons occurs around the brittle-ductile transition zone, whereas vertical lozenge-shaped plutons represent crystallization of magma in the ascent conduit. Blobby plutons form by lateral expansion in the ascent conduit localized by thermal or mechanical instabilities.
机译:大陆壳的形成和分化发生在增生和碰撞造山带的汇聚板块边缘,在那里产生足够的热量以实现高级变质和厌食。存在体积上显着的H_2O熔化需要沿着高应变变形区域或通过断裂网络流入含水流体,或者在结晶过程中通过熔体迁移和流体析出使溶解在熔体中的流体再循环。相反,在“干”地壳中,通过水合物分解熔化反应在高于H_2O存在的熔化温度下发生熔化。大量生产熔体需要温度高于〜800 8C。熔化会润湿残留的晶粒,并且在熔化量为几体积%时,阳极溶皮会变得多孔。变形和熔化之间的反馈创造了动态的流变环境;随着熔体体积增加到熔体连通性转变(变化但约为7 vol。%)(请参阅下文中的讨论),随着温度的升高,在几次熔体损失事件中,熔体可能会从源中逸出。使用计算出的平均白土的相平衡来评估不同压力-温度-时间路径下熔体生产和熔体组成的主要和辅助相控制。残留地壳中包晶矿物的原始状态到稍微退缩的状态要求系统中熔体大量损失。在此评估熔体损失的后果。在残留的地壳中,可以在微观结构中保留晶粒级熔体的证据,而隐性体网络则记录了露头级熔体提取途径的证据。渗透率的应变和各向异性控制中尺度熔体通道的形式,具有强各向异性,促进高熔体聚焦。在自然界中观察到的结构序列记录了从存储到排水的过渡;低熔点组分岩石的剪切剪切破坏会产生集中的熔体流动,从而导致形成通道网络,这些通道允许熔体的积累和储存,并形成熔体从晶界流向上升管道的链接。熔体上升是通过韧性至脆性断裂;延性断裂可能以叶为基石沿叶面传播,或以堤防为扩张或剪切带传播。在脆性-延性过渡区周围发生水平板状和楔形云母的定位,而垂直菱形云母表示上升管道中岩浆的结晶。斑点状小体通过在上升管道中因热或机械不稳定性而局部扩展而形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号