首页> 外文期刊>Fly >Molecular genetics of retinal degeneration A Drosophila perspective
【24h】

Molecular genetics of retinal degeneration A Drosophila perspective

机译:视网膜变性的分子遗传学果蝇观点

获取原文
获取原文并翻译 | 示例
           

摘要

Inherited retinal degeneration in Drosophila has been explored for insights into similar processes in humans. Based on the mechanisms, I divide these mutations in Drosophila into three classes. The first consists of genes that control the specialization of photoreceptor cells including the morphogenesis of visual organelles (rhabdomeres) that house the visual signaling proteins. The second class contains genes that regulate the activity or level of the major rhodopsin, Rh1, which is the light sensor and also provides a structural role for the maintenance of rhabdomeres. Some mutations in Rh1 (NinaE) are dominant due to constitutive activity or folding defects, like autosomal dominant retinitis pigmentosa (ADRP) in humans. The third class consists of genes that control the Ca(2+) influx directly or indirectly by promoting the turnover of the second messenger and regeneration of PIP(2), or mediate the Ca(2+)-dependent regulation of the visual response. These gene products are critical for the increase in cytosolic Ca(2+) following light stimulation to initiate negative regulatory events. Here I will focus on the signaling mechanisms underlying the degeneration in norpA, and in ADRP-type NinaE mutants that produce misfolded Rh1. Accumulation of misfolded Rh1 in the ER triggers the unfolded protein response (UPR), while endosomal accumulation of activated Rh1 may initiate autophagy in norpA. Both autophagy and the UPR are beneficial for relieving defective endosomal trafficking and the ER stress, respectively. However, when photoreceptors fail to cope with the persistence of these stresses, a cell death program is activated leading to retinal degeneration.
机译:果蝇的遗传性视网膜变性已被探索,以了解人类的类似过程。基于这些机制,我将果蝇中的这些突变分为三类。第一个由控制感光细胞专业化的基因组成,这些基因包括容纳视觉信号蛋白的视觉细胞器(横纹肌)的形态发生。第二类包含调节主要视紫红质Rh1的活性或水平的基因,Rh1是光传感器,并且还为维持横纹肌提供结构性作用。 Rh1(NinaE)中的某些突变由于组成性活性或折叠缺陷而占主导地位,例如人类的常染色体显性视网膜色素变性(ADRP)。第三类由通过促进第二信使的周转和PIP(2)的再生直接或间接控制Ca(2+)流入的基因,或介导视觉反应的Ca(2+)依赖性调节。这些基因产物对于光刺激引发负面监管事件后胞质Ca(2+)的增加至关重要。在这里,我将集中讨论norpA和产生错误折叠的Rh1的ADRP型NinaE突变体退化的潜在信号传导机制。 ER中错误折叠的Rh1的积累会触发未折叠的蛋白反应(UPR),而激活的Rh1的内体积累可能会启动norpA的自噬。自噬和UPR分别有助于缓解缺陷的内体运输和内质网应激。然而,当感光细胞不能应付这些压力时,细胞死亡程序被激活,导致视网膜变性。

著录项

  • 来源
    《Fly》 |2011年第4期|共13页
  • 作者

    Shieh Bih-Hwa;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 昆虫学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号