...
首页> 外文期刊>FEMS Yeast Research >Dekkera bruxellensis-spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness
【24h】

Dekkera bruxellensis-spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness

机译:具有生物技术潜力的德克夏德克斯腐烂酵母,以及酵母进化,生理和竞争能力的模型

获取原文
获取原文并翻译 | 示例
           

摘要

Dekkera bruxellensis is a non-conventional yeast normally considered a spoilage organism in wine (off-flavours) and in the bioethanol industry. But it also has potential as production yeast. The species diverged from Saccharomyces cerevisiae 200 mya, before the whole genome duplication. However, it displays similar characteristics such as being Crabtree-and petite positive, and the ability to grow anaerobically. Partial increases in ploidy and promoter rewiring may have enabled evolution of the fermentative lifestyle in D. bruxellensis. On the other hand, it has genes typical for respiratory yeasts, such as for complex I or the alternative oxidase AOX1. Dekkera bruxellensis grows more slowly than S. cerevisiae, but produces similar or greater amounts of ethanol, and very low amounts of glycerol. Glycerol production represents a loss of energy but also functions as a redox sink for NADH formed during synthesis of amino acids and other compounds. Accordingly, anaerobic growth required addition of certain amino acids. In spite of its slow growth, D. bruxellensis outcompeted S. cerevisiae in glucose-limited cultures, indicating a more efficient energy metabolism and/or higher affinity for glucose. This review tries to summarize the latest discoveries about evolution, physiology and metabolism, and biotechnological potential of D. bruxellensis.
机译:Dekkera bruxellensis是一种非常规酵母,通常被认为是葡萄酒(异味)和生物乙醇行业中的腐败生物。但是它也具有作为生产酵母的潜力。在整个基因组复制之前,该物种从酿酒酵母(Saccharomyces cerevisiae)200 mya分离。但是,它表现出类似的特征,例如Crabtree和娇小阳性,以及厌氧生长的能力。倍性和启动子重新布线的部分增加可能使布鲁氏菌的发酵生活方式得以发展。另一方面,它具有呼吸道酵母的典型基因,例如复合物I或替代氧化酶AOX1。德拉克斯德克菌的生长速度比酿酒酵母慢,但会产生相似或更多的乙醇,并且产生的甘油非常少。甘油的产生代表能量的损失,但也起着氨基酸和其他化合物合成过程中形成的NADH的氧化还原汇的作用。因此,厌氧生长需要添加某些氨基酸。尽管其生长缓慢,但在葡萄糖受限的培养物中,D。bruxellensis胜过酿酒酵母,表明能量代谢效率更高和/或对葡萄糖的亲和力更高。这篇综述试图总结关于D. bruxellensis的进化,生理学和新陈代谢以及生物技术潜力的最新发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号