首页> 外文期刊>Global change biology >A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies
【24h】

A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

机译:在环境CO2不断变化的情况下,木本植物中保留了动态的叶片气体交换策略:古生物和CO2富集研究中碳同位素歧视的证据

获取原文
获取原文并翻译 | 示例
           

摘要

Rising atmospheric [CO2], c(a), is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], c(i), a constant drawdown in CO2 (c(a)-c(i)), and a constant c(i)/c(a). These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying c(a). The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to c(a). To assess leaf gas-exchange regulation strategies, we analyzed patterns in c(i) inferred from studies reporting C stable isotope ratios (C-13) or photosynthetic discrimination () in woody angiosperms and gymnosperms that grew across a range of c(a) spanning at least 100ppm. Our results suggest that much of the c(a)-induced changes in c(i)/c(a) occurred across c(a) spanning 200 to 400ppm. These patterns imply that c(a)-c(i) will eventually approach a constant level at high c(a) because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant c(i). Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low c(a), when additional water loss is small for each unit of C gain, and increasingly water-conservative at high c(a), when photosystems are saturated and water loss is large for each unit C gain.
机译:预计大气[CO2]的升高(c(a))将影响木本植物叶片气体交换的气孔调节,从而影响能量通量以及森林的碳(C),水和养分循环。研究人员提出了多种用于气孔调节叶片气体交换的策略,包括维持恒定的叶片内部[CO2],c(i),恒定的CO2下降(c(a)-c(i))和恒定的c (i)/ c(a)。这些策略可能导致烟气交换的后果截然不同。地球系统模型的准确性部分取决于有关叶片气体交换对c(a)变化的响应中可推广模式的假设。最佳气孔行为的概念以木本植物沿着这些策略的连续性转移为例,为了解叶片气体交换对c(a)的响应提供了一个统一的框架。为了评估叶片气体交换调控策略,我们分析了在报告c(a)范围内生长的木质被子植物和裸子植物中C稳定同位素比(C-13)或光合歧视()的研究中推断的c(i)模式。范围至少为100ppm。我们的结果表明,许多c(a)引起的c(i)/ c(a)变化发生在200(至400ppm)的c(a)之间。这些模式暗示c(a)-c(i)最终将在高c(a)时接近恒定水平,因为同化率将达到最大,并且每个物种的气孔电导应限制在某个最小水平。这些分析与针对任何单一策略的渠道化都不一致,尤其是保持恒定的c(i)。相反,该结果与木质被子植物和裸子植物中气孔优化的广泛保守模式的存在是一致的。这导致树木在低c(a)时是大量的水使用者,当每单位C增益额外的水损失较小时,而在高c(a)时,当光系统饱和且水损失较大时,树木的节水性增加。每个C增益。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号