首页> 外文期刊>Biogeosciences >Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system
【24h】

Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

机译:节水型地被水稻生产系统可减少年度水稻种植系统中的温室气体净排放量

获取原文
获取原文并翻译 | 示例
           

摘要

To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9 %, respectively, and decreased annual CH4 emission by 69 %, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha(-1) yr(-1), which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha(-1) yr(-1) for the conventional paddy and 3.05-9.37 Mg CO2-eq ha(-1) yr(-1) for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha(-1) yr(-1)). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
机译:为了维护粮食安全并保护珍贵的水资源,节水地被水稻生产系统(GCRPS)技术正越来越多地用于水稻种植。但是,在GCRPS下土壤水状况和温度的变化可能会影响土壤生物地球化学过程,从而控制甲烷(CH4),一氧化二氮(N2O)和二氧化碳(CO2)在生物圈与大气之间的交换。这项研究的总体目标是更好地了解一年生稻米种植系统中GCRPS对净生态系统温室气体交换(NEGE)和谷物产量的影响。我们的评估基于对整年的CH4和N2O通量以及土壤异养呼吸(CO2排放)的测量,以及对常规稻田和GCRPS的六种不同肥料处理方法估算的土壤固碳强度的基础。对于常规稻田(CUN和CNN)和GCRPS(GUN和GNN),化肥处理包括尿素施用和不施氮,而GCRPS仅采用鸡粪(GCM)和尿素和鸡粪联合施用(GUM)。平均而言,在所有肥料处理中,GCRPS分别使年度N2O排放量和谷物产量分别增加40%和9%,并使CH4的年度排放量减少69%,而GCRPS相对于传统稻谷不会影响土壤CO2排放量。 GUN,GCM和GUM的N2O年直接排放因子分别为4.01、0.09和0.50%,而常规稻(CUN)则为1.52%。据估计,GCRPS下的年土壤固碳强度平均为-1.33 Mg C ha(-1)yr(-1),比常规稻田高约44%。常规稻的年NEGE为10.80-11.02 Mg CO2-eq ha(-1)yr(-1),GCRPS为3.05-9.37 Mg CO2-eq ha(-1)yr(-1),表明潜在GCRPS减少水稻种植带来的温室效应的可行性。将有机肥料用于GCRPS可以大大减少CH4和N2O的年排放量,并增加土壤碳固存,从而使NEGE最低(3.05-5.00 Mg CO2-eq ha(-1)yr(-1))。因此,节水的GCRPS和有机肥料的改良被认为是最有希望的管理制度,可以同时实现较高的谷物产量和减少的温室气体净排放量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号