...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements
【24h】

Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements

机译:与碳酸盐矿物的磷酸消化有关的同位素分馏:第一性原理理论模型和成簇同位素测量的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate 'clumped isotope' analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of C-13-O-18-containing isotopologues ('clumped' isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 degrees C are 10.72 parts per thousand, 0.220 parts per thousand, 0.137 parts per thousand, 0.593 parts per thousand for, respectively, O-18/O-16 ratios (1000ln alpha*) and three indices that measure proportions of multiply-substituted isotopologues (Delta(47)*, Delta(48)*, Delta(49)*). We also predict that oxygen isotope fractionations follow the mass dependence exponent, lambda of 0.5281 (where alpha(17o) = alpha(lambda)(18o)). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of C-13-O-18 bonds (the measured change in Delta(47) = 0.237 parts per thousand) during phosphoric acid digestion of calcite at 25 degrees C. We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and SO Must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of C-13-O-18 doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of Delta(47)* for different carbonate minerals. Combined with previous theoretical evaluations of C-13-O-18 clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.
机译:自1950年以来,磷酸消解已用于碳酸盐矿物的氧同位素和碳同位素分析,并且最近被确立为用于碳酸盐“聚集同位素”分析的方法。从该反应中回收的二氧化碳具有与反应碳酸盐基本不同的氧同位素组成,其数量随反应温度和碳酸盐化学性质而变化。在此,我们基于结构论点提出了与碳酸盐的磷酸消化有关的动力学同位素效应的理论模型,该结构论点是反应的关键步骤是H2CO3反应介质的歧化。我们针对先前对这些氧同位素分级分离的幅度和温度依赖性的实验性约束,以及针对含C-13-O-18同位素(“团簇”同位素物种)的分级分离的新实验性测定方法,测试了该模型。我们的模型预测,对于O-18 / O-16比率,与25°C的碳酸盐进行磷酸消化有关的同位素分馏分别为10.72千分之一,0.220千分之一,0.137千分之一,0.593千分之一(1000ln alpha *)和三个指数来衡量多重取代的同位素异构体的比例(Delta(47)*,Delta(48)*,Delta(49)*)。我们还预测氧同位素分馏遵循质量依赖指数,λ为0.5281(其中α(17o)=α(lambda)(18o))。这些预测与方解石酸磷酸消解的独立实验约束相比具有优势,其中包括我们在磷酸消解方解石中C-13-O-18键的分馏新数据(测得的Delta(47)的变化= 0.237千分之一)。方解石在25摄氏度。我们还尝试使用簇模型(其中歧化的H2CO3与相邻的阳离子相互作用)评估碳酸根阳离子组合物对磷酸消解分离的影响。这些模型低估了同位素分馏的幅度,因此必须认为SO不成功,但确实再现了不同碳酸盐矿物之间氧同位素酸消化分馏的变化和温度依赖性的总体趋势。我们建议这些结果为将来开发更复杂的碳酸盐/酸界面反应模型提供有用的起点。对这些理论预测和现有实验数据的检验表明,阳离子半径是控制不同碳酸盐矿物之间同位素分馏变化的最重要因素。我们预测氧同位素的酸消化分馏与C-13-O-18双取代同位素之间的负相关,并使用这种关系来估算不同碳酸盐矿物的Delta(47)*的酸消化分馏。结合先前对碳酸盐矿物中C-13-O-18结块效应的理论评估,这使我们能够预测不同碳酸盐结块同位素温度计(with石,方解石,文石,白云石和菱镁矿)的温度校准关系。具有可用实验确定性的预测。我们的模型成功地捕获了酸消解过程中同位素分馏的几个特征,这支持了我们的假设:碳酸盐矿物的磷酸消解涉及含H2CO3的过渡态结构的歧化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号