...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements
【24h】

Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements

机译:通过一氧化二氮同位异构体测量阐明了森林生态系统中地下水中一氧化二氮的生物地球化学

获取原文
获取原文并翻译 | 示例
           

摘要

The biological and physical controls on microbial processes that produce and consume NO in soils are highly complex. Isotoporner ratios of N2O, with abundance of (NNO)-N-14-N-15-O-16, (NNO)-N-15-N-14-O-16, and (NNO)-N-14-N-14-O-18 relative to (NNO)-N-14-N-14-O-16, are promising for elucidation of N2O biogeochernistry in an intact ecosystem. Site preference, the nitrogen isotope ratio of the central nitrogen atom minus that of the terminal nitrogen atom, is useful to distinguish between N2O via hydroxylamine oxidation and N2O via nitrite reduction. We applied this isotopomer analysis to a groundwater system in a temperate coniferous-forested ecosystem. Results of a previous study at this location showed that the N2O concentration in groundwater varied greatly according to groundwater chemistry, i.e. NO3-, DOC, and DO, although apportionment of N2O production to nitrification or denitrification was ambiguous. Our isotopic analysis (delta N-15 and delta O-18) of NO3- and N2O implies that denitrification is the dominant production process of N2O, but definitive information is not derived fro delta N-15 and delta O-18 analysis because of large variations in isotopic fractionations during production and consumption of N2O. However, the N2O site preference and the difference in delta N-15 between NO3- and N2O indicate that nitrification contributes to total N2O production and that most measured N2O has been subjected to further N2O reduction to N-2. The implications of N2O biogeochemistry derived from isotope and isotopomer data differ entirely from those derived from conventional concentration data of DO, NO3-, and N2O. That difference underscores the need to reconsider our understanding of the N cycle in the oxic-anoxic interface.
机译:在土壤中产生和消耗一氧化氮的微生物过程的生物和物理控制非常复杂。 N2O的同位素比率,以及(NNO)-N-14-N-15-O-16,(NNO)-N-15-N-14-O-16和(NNO)-N-14-N的丰度相对于(NNO)-N-14-N-14-O-16而言,-14-O-18有望在完整的生态系统中阐明N2O生物地理学。位置偏爱,即中心氮原子的氮同位素比减去末端氮原子的氮同位素比,有助于区分通过羟胺氧化的N2O和通过亚硝酸盐还原的N2O。我们将这种同位素异构体分析应用于温带针叶林生态系统中的地下水系统。在该地点的先前研究结果表明,地下水中的N2O浓度根据地下水的化学性质(即NO3-,DOC和DO)变化很大,尽管将N2O的产生量分配给硝化或反硝化作用并不明确。我们对NO3-和N2O的同位素分析(δN-15和δO-18)表明,反硝化作用是N2O的主要生产过程,但是由于δ-N-15和δO-18分析的结果较大,因此无法得出明确的信息。 N2O生产和消费过程中同位素分馏的变化。但是,N2O位置偏爱以及NO3-和N2O之间的N-15差值表明硝化作用有助于N2O的总产生,并且大多数测得的N2O都经过了N2O进一步还原为N-2。从同位素和同位素数据得出的N2O生物地球化学意义与从DO,NO3-和N2O的常规浓度数据得出的结论完全不同。这种差异强调了需要重新考虑我们对氧-氧界面中N循环的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号