首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Arsenite sequestration at the surface of nano-Fe(OH)_2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens
【24h】

Arsenite sequestration at the surface of nano-Fe(OH)_2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens

机译:腐烂的希瓦氏菌生物还原砷吸附的细水云母后,纳米Fe(OH)_2,氢氧化亚铁氢氧化物和绿锈表面的砷螯合

获取原文
获取原文并翻译 | 示例
           

摘要

X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), X-ray powder diffraction, and M?ssbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (γ-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [Fe~(II) _4Fe~(III) _2(OH)_(12)CO_3: GR1(CO_3)], which completely converted into ferrous-carbonate hydroxide (Fe~(II) _2(OH)_2CO_3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO_3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO_3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occurrence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO_3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH)_2 phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH)_2 nanoparticles as oligomers binding to the edges of Fe(OH)6 octahedra at the edges of the octahedral layers of Fe(OH)_2. These multinuclear As(III) surface complexes are characterized by As-As pairs at a distance of 3.32 ± 0.02 ? and by As-Fe pairs at a distance of 3.50 ± 0.02 ? and represent a new type of As(III) surface complex. Chemical analyses show that the majority of As(III) produced in the experiments with As present is associated with iron-bearing hydroxycarbonate or hydroxide solids, reinforcing the idea that, at least under some circumstances, bacterial reduction can promote As(III) sequestration instead of mobilizing it into solution.
机译:X射线吸收精细结构(XAFS)光谱与高分辨率透射电子显微镜(HRTEM),电子能量损失光谱(EELS),X射线能量色散光谱(XEDS),X射线粉末衍射和M结合使用进行ssbauer光谱分析,以获取Shewanella putrefaciens ATCC 12099厌氧还原纯和As(V)或As(III)吸附的纤铁矿(γ-FeOOH)产物中砷和铁的形态的详细信息。我们发现该菌株S. putrefaciens能够使用纤铁矿中的Fe(III)和溶液中或吸附在纤铁矿表面上的As(V)作为电子受体。在不存在砷的情况下对锂铁辉石进行生物还原导致形成了羟基碳酸盐绿锈1 [Fe〜(II)_4Fe〜(III)_2(OH)_(12)CO_3:GR1(CO_3)],它完全转化为亚铁-历时9个月的氢氧化碳(Fe〜(II)_2(OH)_2CO_3:FCH)。因此,这项研究为细菌将化学计量GR1(CO_3)还原为FCH提供了第一个证据。吸附As(III)的纤铁矿的生物还原也导致FCH形成之前GR1(CO_3)的形成,但是As(III)的存在减慢了这种转化,导致22-一个月的老化。在该实验结束时,发现As(III)吸附在GR1(CO_3)和FCH的表面上。五个月后,带有As(V)的软铁蒙脱石的生物还原直接导致FCH与次要的富As的少量Fe(OH)_2相的纳米级颗粒结合形成,没有绿色锈蚀形成的迹象。在这个为期五个月的实验中,As(V)完全转化为As(III),As(III)作为低聚物与Fe(OH)6八面体边缘的低聚物结合,主要吸附在Fe(OH)_2纳米颗粒的表面。 Fe(OH)_2八面体层的边缘。这些多核As(III)表面配合物的特征是在3.32±0.02?距离处的As-As对。并以3.50±0.02?并代表一种新型的As(III)表面配合物。化学分析表明,在实验中使用As生成的大部分As(III)与含铁的羟基碳酸盐或氢氧化物固体有关,从而强化了这样一种观念,即至少在某些情况下,细菌还原可以促进As(III)的螯合动员解决方案。

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号