首页> 外文期刊>Evolution: International Journal of Organic Evolution >Expected relative fitness and the adaptive topography of fluctuating selection
【24h】

Expected relative fitness and the adaptive topography of fluctuating selection

机译:预期相对适应度和波动选择的自适应地形

获取原文
获取原文并翻译 | 示例
           

摘要

Wright's adaptive topography describes gene frequency evolution as a maximization of mean fitness in a constant environment. I extended this to a fluctuating environment by unifying theories of stochastic demography and fluctuating selection, assuming small or moderate fluctuations in demographic rates with a stationary distribution, and weak selection among the types. The demography of a large population, composed of haploid genotypes at a single locus or normally distributed phenotypes, can then be approximated as a diffusion process and transformed to produce the dynamics of population size, N, and gene frequency, p, or mean phenotype, (z) over bar. The expected evolution of p or (z) over bar is a product of genetic variability and the gradient of the long- run growth rate of the population, (r) over tilde, with respect to p or (z) over bar. This shows that the expected evolution maximizes (r) over tilde, the mean Malthusian fitness in the average environment minus half the environmental variance in population growth rate. Thus, (r) over tilde as a function of p or (z) over bar represents an adaptive topography that, despite environmental fluctuations, does not change with time. The haploid model is dominated by environmental stochasticity, so the expected maximization is not realized. Different constraints on quantitative genetic variability, and stabilizing selection in the average environment, allow evolution of the mean phenotype to undergo a stochastic maximization of (r) over tilde. Although the expected evolution maximizes the long- run growth rate of the population, for a genotype or phenotype the long- run growth rate is not a valid measure of fitness in a fluctuating environment. The haploid and quantitative character models both reveal that the expected relative fitness of a type is its Malthusian fitness in the average environment minus the environmental covariance between its growth rate and that of the population.
机译:赖特(Wright)的自适应地形学将基因频率进化描述为在恒定环境中最大化平均适应性。我通过统一随机人口统计学和波动选择的理论,将其扩展到波动的环境中,假设人口统计学特征的波动幅度较小或适中,且分布平稳,并且类型之间的选择较弱。然后,可以将由单个位点上的单倍体基因型或正态分布表型组成的大量人口的人口统计学方法近似为扩散过程,并进行转换,以产生种群大小,N和基因频率p或平均表型的动态变化, (z)以上。 p或(z)超过bar的预期演变是遗传变异性和人口(r)超过代字号的长期增长率相对于p或(z)超过bar的乘积。这表明预期的进化在波浪号上最大化(r),波浪线在平均环境中的平均马尔萨斯适应度减去人口增长率的环境方差的一半。因此,(p)上的波浪号上的(r)或bar上的(z)上的波浪线代表一种自适应地形,尽管环境波动,该地形也不会随时间变化。单倍体模型受环境随机性支配,因此无法实现预期的最大化。在定量遗传变异性上的不同限制以及在平均环境中的稳定选择,使平均表型的演变在波浪号上经历(r)的随机最大化。尽管预期的进化使人口的长期增长率最大化,但是对于基因型或表型,长期增长率并不是适应环境变化的有效指标。单倍体和定量特征模型都揭示了一种类型的预期相对适应度是其在平均环境中的马尔萨斯适应度减去其增长率与人口增长率之间的环境协方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号