...
首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >Proton-coupled electron transfer at the Q_o-site of the bc_1 complex controls the rate of ubihydroquinone oxidation
【24h】

Proton-coupled electron transfer at the Q_o-site of the bc_1 complex controls the rate of ubihydroquinone oxidation

机译:bc_1配合物Q_o位的质子耦合电子转移控制泛氢醌氧化速率

获取原文
获取原文并翻译 | 示例
           

摘要

The rate-limiting reaction of the bc_1 complex from Rhodobacter sphaeroides is transfer of the first electron from ubihydroquinone (quinol, QH_2) to the [2Fe–2S] cluster of the Rieske iron–sulfur protein (ISP) at the Q_o-site. Formation of the ES-complex requires participation of two substrates (S), QH_2 and ISP_(ox). From the variation of rate with [S], the binding constants for both substrates involved in formation of the complex can be estimated. The configuration of the ES-complex likely involves the dissociated form of the oxidized ISP (ISP_(ox)) docked at the b-interface on cyt b, in a complex in which N_ε of His-161 (bovine sequence) forms a H-bond with the quinol -OH. A coupled proton and electron transfer occurs along this H-bond. This brief review discusses the information available on the nature of this reaction from kinetic, structural and mutagenesis studies. The rate is much slower than expected from the distance involved, likely because it is controlled by the low probability of finding the proton in the configuration required for electron transfer. A simplified treatment of the activation barrier is developed in terms of a probability function determined by the Br?nsted relationship, and a Marcus treatment of the electron transfer step. Incorporation of this relationship into a computer model allows exploration of the energy landscape. A set of parameters including reasonable values for activation energy, reorganization energy, distances between reactants, and driving forces, all consistent with experimental data, explains why the rate is slow, and accounts for the altered kinetics in mutant strains in which the driving force and energy profile are modified by changes in E_m and/or pK of ISP or heme b_L.
机译:球形球形红细菌中bc_1络合物的限速反应是第一电子从泛氢醌(喹诺酮,QH_2)转移到Q_o部位的Rieske铁-硫蛋白(ISP)的[2Fe-2S]簇。 ES复合物的形成需要两个底物(S)QH_2和ISP_(ox)的参与。从速率随[S]的变化,可以估计参与复合物形成的两种底物的结合常数。 ES复合物的构型可能涉及氧化型ISP(ISP_(ox))的解离形式,该复合物停靠在cyt b的b-界面上,该复合物中His-161(牛序列)的N_ε形成H-与喹啉-OH键合。沿着该氢键发生质子和电子的耦合转移。这篇简短的评论讨论了动力学,结构和诱变研究中有关该反应性质的可用信息。该速率比从所涉及的距离所预期的要慢得多,这可能是因为它受电子转移所需结构中发现质子的可能性低的控制。根据由布朗斯台德关系确定的概率函数和电子转移步骤的马库斯处理,开发了对活化势垒的简化处理。将此关系纳入计算机模型可以探索能源格局。一组参数,包括活化能,重组能,反应物之间的距离和驱动力的合理值,均与实验数据一致,解释了为什么速率慢,并解释了驱动力和驱动力在突变菌株中的动力学变化。能量分布通过ISP或血红素b_L的E_m和/或pK的变化进行修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号