...
【24h】

Coupled numerical-analytical approach to landscape evolution modeling

机译:耦合数值分析方法用于景观演化建模

获取原文
获取原文并翻译 | 示例
           

摘要

The Earth's topography is shaped by surface processes that operate on various scales. In particular, river processes control landscape dynamics over large length scales, whereas hillslope processes control the dynamics over smaller length scales. This scale separation challenges numerical treatments of landscape evolution that use space discretization. Large grid spacing cannot account for the dynamics of water divides that control drainage area competition, and erosion rate and slope distribution. Small grid spacing that properly accounts for divide dynamics is computationally inefficient when studying large domains. Here we propose a new approach for landscape evolution modeling that couples irregular grid-based numerical solutions for the large-scale fluvial dynamics and continuum-based analytical solutions for the small-scale fluvial and hillslope dynamics. The new approach is implemented in the landscape evolution model DAC (divide and capture). The geometrical and topological characteristics of DAC's landscapes show compatibility with those of natural landscapes. A comparative study shows that, even with large grid spacing, DAC predictions fit well an analytical solution for divide migration in the presence of horizontal advection of topography. In addition, DAC is used to study some outstanding problems in landscape evolution.(i) The time to steady-state is investigated and simulations show that steady-state requires much more time to achieve than predicted by fixed area calculations, due to divides migration and persistent reorganization of low-order streams. (ii) Large-scale stream captures in a strike-slip environment are studied and show a distinct pattern of erosion rates that can be used to identify recent capture events. (iii) Three tectono-climatic mechanisms that can lead to asymmetric mountains are studied. Each of the mechanisms produces a distinct morphology and erosion rate distribution. Application to the Southern Alps of New Zealand suggests that tectonic advection, precipitation gradients and non-uniform tectonic uplift act together to shape the first-order topography of this mountain range.
机译:地球的地形是由在各种尺度上运行的表面过程所形成的。特别是,河流过程在较大的尺度上控制景观动态,而山坡过程在较小的尺度上控制动态。这种尺度分离挑战了使用空间离散化的景观演化的数值处理。较大的网格间距不能解释控制流域竞争的水位分配动态以及侵蚀率和坡度分布。在研究大范围时,正确说明划分动力学的较小网格间距在计算上效率低下。在这里,我们提出了一种景观演化建模的新方法,该方法将针对大型河流动力学的基于不规则网格的数值解与针对小型河流和山坡动力学的基于连续体的解析解相结合。新方法在景观演化模型DAC(划分和捕获)中实现。 DAC景观的几何和拓扑特征显示出与自然景观的兼容性。一项比较研究表明,即使网格间距很大,在地形水平对流的情况下,DAC预测也很适合用于划分迁移的解析解决方案。此外,DAC还用于研究景观演化中的一些突出问题。(i)研究了达到稳态所需的时间,仿真结果表明,由于划分迁移,稳态所需的时间比固定面积计算所预测的要长得多以及对低阶流的持续重组。 (ii)研究了在走滑环境中的大规模河道捕获,并显示了不同的侵蚀速率模式,可用于识别最近的捕获事件。 (iii)研究了三种可能导致不对称山脉的构造-气候机制。每种机制都会产生不同的形态和腐蚀速率分布。在新西兰南阿尔卑斯山的应用表明,构造对流,降水梯度和非均匀构造隆升共同作用,形成了该山脉的一级地形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号