首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Fluid Temperature and Salinity Characteristics of the Matagami Volcanogenic Massive Sulfide District, Quebec
【24h】

Fluid Temperature and Salinity Characteristics of the Matagami Volcanogenic Massive Sulfide District, Quebec

机译:魁北克Matagami火山成块状硫化物区的流体温度和盐度特征

获取原文
获取原文并翻译 | 示例
           

摘要

Fluid inclusions hosted within various lithologic units of the >40 million metric ton (Mt) Matagami district, Abitibi greenstone belt, preserve samples of Archean volcanogenic massive sulfide (VMS) and postvol-canogenic massive sulfide hydrothermal fluid. Microthermometric measurements on ore-hosted primary two-phase liquid-vapor inclusions from Matagamis south limb deposits indicate that the VMS hydrothermal fluid was highly saline (16.2 + - 4.7 wt percent NaCl-CaCl_2 equiv, 1 sigma, n velence 230) and of moderate temperature (trapping temperature, T_t velence 208 deg + - 32 deg C, la, n velence 230). A fluid with these characteristics is capable of transporting approx 5 X 10~(-4) m (30 ppm) Zn as ZnCl_3~- and ZnCl_4~(2-) chloride complexes. However, the low temperature of this fluid precluded efficient Cu transport (< = 3 ppm), which may in part explain the relatively Cu poor nature of the Matagami deposits. Calculated densities of this ore fluid as high as 1.10 g/cm~3 are consistent with a bottom-hugging brine model. However, a subset of the data indicate a fluid less dense than ambient seawater, suggesting that buoyant hydrothermal plumes were also present. A microthermometrically determined high CaCl_2 content (X_(NaCl) <0.55, molar Na/Ca velence 2.3/1) for the VMS ore-hosted primary fluid is consistent with an Archean hydrothermal fluid more Ca-rich than modern-day seawater. Quartz-epidote veins located in the hydrothermal cracking zone of the Bell River Complex host primary liquid-vapor-halite inclusions. These inclusions are interpreted to be samples of the deep-seated equivalent to the VMS ore-hosted hydrothermal fluid described above. Microthermometry indicates that these inclusions trapped a high-temperature brine (T_t velence 373 deg + - 44 deg C, la, n velence 92; 38.2 + - 1.9 wt percent NaCl equiv, 1 sigma, n velence 92). We interpret this brine to be a phase-separated product of (modified) model seawater (3.2 wt percent NaCl), an exsolved magmatic fluid, or a combination thereof, deep within the hydrothermal system at 650 deg to 670 deg C and a near-lithostatic pressure of 90 MPa. Phase separation and subsequent convection lowered the temperature of the brine prior to its entrapment within the hydrothermal cracking zone. The occurrence of high-temperature brine overlain by lower temperature/salinity fluid suggests a two-cell convection model, consistent with metal mass-balance calculations for the south limb. The high salinity of the ore-hosted fluid inclusions indicates two possibilities: (1) a significant amount of brine was incorporated into the upper cell and mixed with heated seawater during convection; (2) Archean seawater itself was very saline and of variable salinity. With the cooling of the Bell River Complex, lower temperature fluids, dominantly of seawater origin, circulated deep within the hydrothermal system. Modified by water-rock interaction, yet not phase separated, these fluids sealed off the remnant permeability of the fracture network of the hydrothermal cracking zone and were locally trapped as secondary liquid-vapor fluid inclusions (homogenization temperature, Th velence 242 deg + - 17 deg C; 9.1 + - 1.6 wt percent NaCl equiv, la, n velence 14) hosted within the Bell River Complex quartz-epidote vein material. Post- and/or waning-stage VMS hydrothermal activity is evident from the presence of quartz-epidote veins crosscutting Wabassee Group hanging-wall rocks. Microthermometry on quartz-hosted primary liquid-vapor fluid inclusions suggests that this activity occurred at relatively low temperatures (T_h velence 76 deg-177 deg C, n velence 212), over a wide range of salinity (6.0-32.4 wt percent NaCl-CaCU equiv, n velence 212), and with a high apparent CaCl_2 content (X_(NaCl )<0.06). These fluid inclusion data illustrate the importance of subsea-floor chemical and physical processes directly related to metal transport and deposition in VMS systems. In particular, phase separation deep wit
机译:在Abitibi绿岩带的> 4,000万吨(Mt)Matagami区的各种岩性单元中托管的流体包裹体,保留着太古宙火山成块的大块硫化物(VMS)和火山后成块的块状大块硫化物热液。对来自Matagamis南肢矿床的矿床主要两相液体蒸气包裹体的显微热测量表明,VMS热液流体含盐量高(16.2 +-4.7 wt%NaCl-CaCl_2当量,1 sigma,nvelence 230),中等温度(诱捕温度,T_t速度208摄氏度+-32摄氏度,1a,n速度230)。具有这些特征的流体能够以ZnCl_3〜-和ZnCl_4〜(2-)氯化物络合物的形式输送约5 X 10〜(-4)m(30 ppm)的Zn。但是,这种流体的低温妨碍了有效的铜传输(<= 3 ppm),这在一定程度上可以解释玛塔格米沉积物相对较弱的铜性质。该矿液的计算密度高达1.10 g / cm〜3,与底部拥抱盐水模型一致。但是,一部分数据表明流体的密度低于周围海水的密度,表明还存在浮力的热液羽流。微量热法测定的VMS矿石主流体的高CaCl_2含量(X_(NaCl)<0.55,Na / Ca摩尔比2.3 / 1摩尔)与一种比现代海水更富Ca的太古宙热液。位于贝尔河综合体热液裂化带的石英埃皮科特脉含有主要的液态蒸气-卤化物包裹体。这些夹杂物被解释为等同于上述VMS矿石包裹的热液的深层样品。显微热分析法表明,这些夹杂物捕获了高温盐水(T_tence 373℃--44℃,1a,n velence 92; 38.2 +-1.9 wt%NaCl当量,1 sigma,n velence 92)。我们将这种盐水解释为是在650℃至670℃的热液系统深处(经改性的)模型海水(3.2 wt%NaCl),一种溶解的岩浆流体或它们的组合的相分离产物。岩石静压力为90 MPa。相分离和随后的对流降低了盐水的温度,然后将其截留在热液裂化区中。较低温度/盐度流体覆盖的高温盐水的出现提示了一个二单元对流模型,与南肢的金属质量平衡计算相符。矿床流体包裹体的高盐度表明了两种可能性:(1)在对流过程中,大量的盐水被掺入上部单元并与加热的海水混合; (2)古宙海水本身含盐量很高,盐度也各不相同。随着贝尔河综合体的冷却,温度较低的流体(主要来自海水)在热液系统内部深处循环。经过水-岩相互作用的改性,但没有发生相分离,这些流体封闭了热液裂化带裂缝网络的残余渗透率,并被局部捕获为次要的液-气流体包裹体(均质温度,Thvelence 242度+-17 ℃; 9.1±1.6wt%的NaCl当量,1a,n,14)存在于贝尔河综合体石英-埃皮科特脉材料中。后和/或减弱阶段的VMS热液活动从横切Wabassee Group挂壁岩石的石英埃皮科特脉的存在中可以明显看出。石英载主液体-蒸气流体包裹体的显微热分析表明,这种活性发生在相对较低的温度(T_h velence 76℃-177℃,nvelence 212),盐度范围广(6.0-32.4 wt%NaCl-CaCU)当量n 212),并且具有较高的表观CaCl_2含量(X_(NaCl)<0.06)。这些流体包裹体数据说明了与VMS系统中金属传输和沉积直接相关的海底化学和物理过程的重要性。特别是相分离深层的机智

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号