...
首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Experimental Constraints on the Sulfide- and Chromite-Silicate Melt Partitioning Behavior of Rhenium and Platinum-Group Elements
【24h】

Experimental Constraints on the Sulfide- and Chromite-Silicate Melt Partitioning Behavior of Rhenium and Platinum-Group Elements

机译:R和铂族元素的硫化物和亚铁酸盐-硅酸盐熔体分配行为的实验约束

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the origin of high platinum-group element (PGE) abundances associated with chromite-rich rocks by determining the relative partitioning of these elements between chromite- and sulfide-silicate liquids. Chromites were crystallized in the presence of immiscible sulfide and silicate melts in experiments at 1 GPa, producing a few, relatively large (20-50 mu m) crystals, which were analyzed by laser ablation ICP-MS. Our results show that the PGE inventory of chromite and silicate melt produced in experiments is dominated by sulfide and/or alloy micronuggets and that the intrinsic PGE content of these phases is low (sub-ppm), despite high concentrations in coexisting sulfide liquid (i.e., up to alloy saturation). Lower bounds on minimum sulfide-silicate melt PGE partition coefficients (D_(PGE)) calculated from this data are 0.4 to 10 X 10~4, which are similar to values determined in previous studies, confirming the extreme fractionation of these elements into the sulfide phase. Rhenium, which was added to experiments in order to constrain Re-Os fractionation, is highly concentrated in sulfide liquid, present at low but uniform levels in silicate melt, and undetectable in chromite. Calculated sulfide-silicate melt D_(Re), are 3.3 to 5.2 X 10~4, and experiments yielded lower bounds for D_(Os)/D_(Re) of 3, indicating that sulfide-silicate melt equilibrium can fractionate Re from Os. Minimum sulfide melt-chromite partition coefficients are 1,000 or more, indicating that coexisting sulfide melt will be the dominant host for the PGE. Using this partitioning data, we have calculated the mass balance for Ir in chromite-sulfide mixtures and show that for rocks with greater than 200 ppm sulfur, less than 24 percent of the Ir will be in chromite, illustrating that chromite is not the significant PGE host even in low sulfur chromitites. In an experiment saturated in Ir-Re alloy, we measured a maximum iridium concentration in run-product chromites of 150 ppb, which, when combined with an estimate of the Ir activity in the coexisting alloy, yields a maximum Ir solubility of approx 210 ppb. We have found examples of chromitites with Ir contents exceeding this value, indicating that these samples have accumulated an additional PGE-bearing phase. Such results support the notion that interstitial sulfide liquid, or accessory minerals included at the magmatic stage (i.e., laurite, alloys), are most likely to be the dominant primary hosts for PGE in chromite-rich rocks.
机译:我们通过确定铬铁矿和硫化物硅酸盐液体之间这些元素的相对分配,来研究与富铬铁矿岩石相关的高铂族元素(PGE)丰度的成因。在1 GPa的实验中,亚铬酸盐在不混溶的硫化物和硅酸盐熔体存在下结晶,生成了一些相对较大的晶体(20-50微米),并通过激光烧蚀ICP-MS分析。我们的结果表明,实验中产生的铬铁矿和硅酸盐熔体的PGE存量主要由硫化物和/或合金微块组成,尽管这些固相存在的硫化物液体中的浓度很高,但这些相的固有PGE含量低(低于ppm)(即,直至合金饱和)。根据该数据计算出的最小硫化物-硅酸盐熔体PGE分配系数(D_(PGE))的下限为0.4至10 X 10〜4,与先前研究确定的值相似,证实了这些元素在硫化物中的极端分馏。相。为了限制Re-Os的分馏而添加到实验中的,在硫化物液体中高度浓缩,在硅酸盐熔体中的含量低但均匀,在亚铬酸盐中则无法检测到。计算得出的硫化物-硅酸盐熔体D_(Re)为3.3至5.2 X 10〜4,并且实验得出D_(Os)/ D_(Re)为3的下界,表明硫化物-硅酸盐熔体平衡可以将Re从Os中分离出来。最小硫化物熔体-亚铬酸盐分配系数为1,000或更大,表明共存的硫化物熔体将成为PGE的主要主体。使用该划分数据,我们计算了铬铁矿-硫化物混合物中Ir的质量平衡,并表明,对于硫含量大于200 ppm的岩石,不到24%的Ir会存在于铬铁矿中,这说明铬铁矿不是重要的PGE。甚至在低硫亚铬酸盐中也能保持宿主。在用Ir-Re合金饱和的实验中,我们测得副产品亚铬酸盐中的最大铱浓度为150 ppb,与对共存合金中Ir活性的估计值相结合,得出的最大Ir溶解度约为210 ppb 。我们发现了Ir含量超过该值的铬铁矿实例,表明这些样品已经积累了一个额外的PGE轴承相。这些结果支持这样的观点,即在岩浆阶段所含的间隙硫化物液体或辅助矿物(即月桂石,合金)最有可能是富铬铁矿岩石中PGE的主要主要宿主。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号