...
首页> 外文期刊>Ecological Modelling >Solving conservation planning problems with integer linear programming
【24h】

Solving conservation planning problems with integer linear programming

机译:用整数线性规划法解决保护规划问题

获取原文
获取原文并翻译 | 示例
           

摘要

Deciding where to implement conservation actions in order to meet conservation targets efficiently is an important component of systematic conservation planning. Mathematical optimisation is a quantitative and transparent framework for solving these problems. Despite several advantages of exact methods such as integer linear programming (ILP), most conservation planning problems to date have been solved using heuristic approaches such as simulated annealing (SA). We explain how to implement common conservation planning problems (e.g. Marxan and Marxan With Zones) in an ILP framework and how these formulations can be extended to account for spatial dependencies among planning units, such as those arising from environmental flows (e.g. rivers). Using simulated datasets, we demonstrate that ILP outperforms SA with respect to both solution quality (how close it is to optimality) and processing time over a range of problem sizes. For modestly sized quadratic problems (100,000 spatial units and 10 species), for example, a processing time of approximately 14 h was required for SA to achieve a solution within 19% of optimality, while ILP achieved solutions within 0.5% of optimality within 30 s. For the largest quadratic problems we evaluated processing time exceeding one day was required for SA to achieve a solution within 49% of optimality, while ILP achieved solutions within 0.5% of optimality in approximately one hour. Heuristics are conceptually simple and can be applied to large and non-linear objective functions but unlike ILP, produce solutions of unknown quality. We also discuss how ILP approaches also facilitate quantification of trade-off curves and sensitivity analysis. When solving linear or quadratic conservation planning problems we recommend using ILP over heuristic approaches whenever possible. (C) 2016 Elsevier B.V. All rights reserved.
机译:决定在何处实施保护措施以有效实现保护目标是系统保护计划的重要组成部分。数学优化是解决这些问题的定量且透明的框架。尽管精确方法(例如整数线性规划(ILP))具有许多优点,但迄今为止,大多数保护计划问题已使用启发式方法(例如模拟退火(SA))解决。我们解释了如何在ILP框架中实施常见的保护规划问题(例如,马克思和带区域的马克思),以及如何扩展这些公式以解决规划单位之间的空间依赖性,例如环境流量(例如河流)引起的空间依赖性。使用模拟数据集,我们证明了在一系列问题规模上,ILP在解决方案质量(接近最优性)和处理时间方面均优于SA。例如,对于中等大小的二次问题(100,000个空间单位和10个物种),SA需要大约14 h的处理时间才能在19 s的最优范围内获得解决方案,而ILP在30 s的时间内实现0.5%的最优范围内的解决方案。对于最大的二次问题,我们评估了SA需要超过一天的处理时间才能使解决方案在最优值的49%之内,而ILP在大约一小时内达到解决方案的最优值在0.5%之内。启发式从概念上讲很简单,可以应用于大型和非线性目标函数,但与ILP不同,启发式产生未知质量的解决方案。我们还将讨论ILP方法如何也有助于权衡曲线和灵敏度分析的量化。解决线性或二次保护规划问题时,建议尽可能使用ILP而非启发式方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号