首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Sulfur isotope partitioning during experimental formation of pynite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records
【24h】

Sulfur isotope partitioning during experimental formation of pynite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records

机译:通过多硫化物和硫化氢途径硫铁矿的实验形成过程中的硫同位素分配:对沉积和热液黄铁矿同位素记录的解释的意义

获取原文
获取原文并翻译 | 示例
           

摘要

We show that the sulfur isotopic composition of sedimentary and hydrothermal pyrite is a good approximation of the average sulfur isotopic composition of the dissolved sulfide sources from which the pyrite formed. Consequently, pyrite sulfur isotope systematics normally provide little evidence of the pyrite-forming mechanism in most natural systems. Stable sulfur isotope partitioning during pyrite (FeS2) synthesis via the polysulfide and H2S pathways was investigated between 80 and 120 degreesC. Iron monosulfide (FeS) was reacted with hydrogen sulfide (H2S) or tetrasulfide (S-4(2-)) in aqueous solution under strictly anoxic conditions. The results provide independent confirmation of the hydrogen sulfide and poly sulfide mechanisms. The measured isotopic composition of the synthesized pyrite is compared with (1) isotopic mixing models of the reactant reservoirs and (2) predictions based on the suggested mechanisms for the hydrogen sulfide and polysulfide pathways for pyrite formation. The isotopic composition of the pyrite product is consistent with the result predicted from the reaction mechanisms. Pyrite produced via the H2S pathway has a composition reflecting isotopic contributions from both FeS and H2S reservoirs. Pyrite formed via the polysulfide pathway inherits an isotopic composition dominated by the polysulfide reservoir to both cases. solubility driven isotope exchange between FeS and aqueous S species contribute to the final pyrite composition. We show that published experimental sulfur isotope data for pyrite formation which apparently support conflicting pyrite-forming pathways, are consistent with pyritization via the polysulfide and H2S pathways. Formation rates of natural pyrite, however. may be too slow compared to solubility exchange for the influence of the reaction pathway on the isotopic composition to be significant. (C) 2004 Elsevier B.V. All rights reserved.
机译:我们表明,沉积和热液黄铁矿的硫同位素组成与形成黄铁矿的溶解硫化物源的平均硫同位素组成有很好的近似关系。因此,黄铁矿硫同位素系统学通常无法提供大多数自然系统中黄铁矿形成机理的证据。在80至120摄氏度之间,研究了通过多硫化物和H2S途径在黄铁矿(FeS2)合成过程中稳定的硫同位素分配。在严格的缺氧条件下,使一硫化铁(FeS)与硫化氢(H2S)或四硫化物(S-4(2-))反应。结果提供了硫化氢和多硫化物机理的独立证实。将测得的合成黄铁矿的同位素组成与(1)反应物储层的同位素混合模型和(2)基于建议的硫化氢和多硫化物黄铁矿形成途径的机理的预测进行比较。黄铁矿产物的同位素组成与反应机理预测的结果一致。通过H2S途径产生的硫铁矿具有反映FeS和H2S储层同位素贡献的组成。通过多硫化物途径形成的硫铁矿在两种情况下都继承了以多硫化物储层为主的同位素组成。 FeS和S水溶液之间的溶解度驱动的同位素交换有助于最终的黄铁矿组成。我们显示已发布的硫铁矿形成的实验性硫同位素数据显然支持相互矛盾的黄铁矿形成途径,与通过多硫化物和H2S途径进行的黄铁矿化相一致。但是,天然黄铁矿的形成速率。与溶解度交换相比,对于反应途径对同位素组成的影响而言,可能太慢了。 (C)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号