首页> 外文期刊>International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena >HOMOTOPY SEMI-NUMERICAL MODELLING OF NANOFLUID CONVECTION BOUNDARY LAYERS FROM AN ISOTHERMAL SPHERICAL BODY IN A PERMEABLE REGIME
【24h】

HOMOTOPY SEMI-NUMERICAL MODELLING OF NANOFLUID CONVECTION BOUNDARY LAYERS FROM AN ISOTHERMAL SPHERICAL BODY IN A PERMEABLE REGIME

机译:渗透系统中等温球状体对流对流边界层的同质半数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Nanofluids hold significant promise in enhancing transport phenomena in chemical engineering and energy storage systems. Key mechanisms via which thermal conductivity is elevated are Brownian motion and thermophoretic diffusion effects. In this study we examine with a powerful semi-numerical technique, the Homotopy Analysis Method (HAM), the steady laminar free convection heat and mass transfer in incompressible nanofluid boundary layer flow from a spherical geometry embedded in an isotropic, homogenous porous material. Employing the classical Darcy model, the boundary layer equations are formulated with a porosity function (ε). These nonlinear parabolic partial differential equations are normalized from an (x,y) coordinate system to a (ξ,η) coordinate system, with appropriate boundary conditions. Detailed computations are performed with HAM to elucidate the effects of Brownian motion number (Nb), Lewis number (Le), buoyancy parameter (Nr) and thermophoresis parameter (Nt) on the key transport variables: re-scaled nanoparticle volume fraction (f), dimensionless velocity (S/) and dimensionless temperature (Θ). The solutions are benchmarked with a robust shooting quadrature, demonstrating excellent correlation. The significant potential of HAM in analyzing strongly coupled, nonlinear nanofluid flows is demonstrated. The study finds applications in packed bed reactor simulations in chemical engineering and also near-field thermal contamination processes from containers buried in soil.
机译:纳米流体在增强化学工程和能量存储系统中的传输现象方面具有广阔的前景。提高导热系数的关键机制是布朗运动和热泳扩散效应。在这项研究中,我们使用一种强大的半数值技术,即同伦分析方法(HAM),研究了不可压缩的纳米流体边界层中稳定的层流自由对流传热和传质,这些流动来自嵌在各向同性,均质多孔材料中的球形几何体。利用经典的达西模型,边界层方程由孔隙度函数(ε)表示。在适当的边界条件下,将这些非线性抛物型偏微分方程从(x,y)坐标系归一化为(ξ,η)坐标系。使用HAM进行详细的计算,以阐明布朗运动数(Nb),路易斯数(Le),浮力参数(Nr)和热泳参数(Nt)对关键传输变量的影响:重新定标的纳米颗粒体积分数(f) ,无量纲速度(S /)和无量纲温度(Θ)。该解决方案以强大的拍摄正交度为基准,证明了出色的相关性。证明了HAM在分析强耦合非线性纳米流体流中的巨大潜力。该研究发现了在化学工程中填充床反应器模拟中的应用以及埋在土壤中的容器的近场热污染过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号