...
首页> 外文期刊>International Journal of Thermal Sciences >Impact of dissociation and end pressure on determination of laminar burning velocities in constant volume combustion
【24h】

Impact of dissociation and end pressure on determination of laminar burning velocities in constant volume combustion

机译:解离和终压对确定体积燃烧中层流燃烧速度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Determining laminar burning velocities S{sub}L from the pressure trace in constant volume combustion requires knowledge of the burnt fraction as a function of pressure, x(p). In recent literature x(p) is either determined via numerical modeling or via the oversimplified assumption that x(p) is equal to the fractional pressure rise. Recently, we have shown that the latter violates energy conservation, and derived alternative analytical x(p) relations based on zone modeling which are more simple to apply than numerical models. However we had to assume perfect gas behavior, neglecting dissociation. In this paper we systematically compare our analytical models with a numerical two-zone model and with a ID unsteady simulation (1DUS) of a spherical stoichiometric methane-air flame in a constant volume. Results indicate that our analytical models reasonably describe the burnt fraction as a function of fractional pressure rise. However the x(p) relation also involves the (theoretical) end pressure p{sub}e. Its value significantly affects S{sub}L, with a relative sensitivity close to minus one, and is influenced by dissociation. Evaluating p{sub}e from an equilibrium code, in combination with the analytical x(p) model, provides S{sub}L results within 3% accuracy. This approach removes the need for numerical modeling of intermediate stages of combustion. Still, highest accuracy for S{sub}L is achieved using numerical x(p) models that account for dissociation also for intermediate stages. Comparing results of the 1DUS with the two-zone equilibrium model shows that the combined effect of detailed chemistry, flame stretch, heat transfer between zones, and the temperature gradient in the burnt mixture is limited to about 1% for the example case.
机译:从恒定容积燃烧中的压力迹线确定层流燃烧速度S {sub} L需要知道燃烧分数与压力x(p)的关系。在最近的文献中,x(p)是通过数值模型确定的,或者通过过分简化的假设确定的,即x(p)等于分数压力上升。最近,我们已经显示出后者违反了能量守恒原则,并且基于区域模型推导了替代解析x(p)关系,该关系比数值模型更容易应用。但是,我们必须假定气体行为完美,而忽略离解。在本文中,我们系统地将分析模型与数值二区模型和恒定体积的球形化学计量甲烷-空气火焰的ID非稳态模拟(1DUS)进行比较。结果表明,我们的分析模型合理地将燃烧分数描述为分数压力上升的函数。但是,x(p)关系还涉及(理论上的)最终压力p {sub} e。它的值显着影响S {sub} L,相对灵敏度接近负1,并且受解离影响。从平衡码评估p {sub} e,再结合解析x(p)模型,可在3%的精度内提供S {sub} L结果。这种方法消除了对燃烧中间阶段进行数值建模的需要。尽管如此,使用数值x(p)模型仍可实现S {sub} L的最高精度,该模型也考虑了中间级的解离。 1DUS与两区域平衡模型的比较结果表明,在示例情况下,详细化学作用,火焰拉伸,区域之间的热传递以及燃烧混合物中的温度梯度的综合影响被限制为大约1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号