首页> 外文期刊>International Journal of Spray and Combustion Dynamics >Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame
【24h】

Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame

机译:湍流C2H4 /空气扩散火焰中烟尘形成的数值模型

获取原文
获取原文并翻译 | 示例
           

摘要

Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.
机译:使用两种不同的碳烟成核和氧化途径研究了在提升的C2H4-空气湍流扩散火焰中的碳烟形成。通过使用ANSYS FLUENT 15.0进行2D轴对称RANS仿真。使用两种不同的方法对湍流-化学相互作用进行建模:稳态层流小火焰方法和小火焰生成的歧管。以POLIMI为代表的化学机理研究了物种浓度对烟灰形成的影响。 P1近似用于将辐射传递方程近似为球形谐波中的截断级数展开,而灰色气体的加权总和用于吸收系数建模,而烟灰模型则用于形核,凝聚,表面生长和氧化。第一个成核途径将乙炔浓度作为烟尘成核速率的线性函数,而第二个途径则将两个和三个环芳族物质视为成核速率的函数。基于平衡的瞬时方法已用于估算烟灰氧化的OH浓度。对Lee和Fenimore-Jones的烟灰氧化模型进行了研究,以阐明OH对烟灰氧化的影响。此外,就烟灰的吸收系数而言,烟灰-辐射相互作用也包括在内。此外,已经使用基于温度/混合物分数的单变量PDF调用了烟灰-湍流相互作用。两种湍流-化学相互作用模型都能够准确预测火焰剥离高度,并且为了准确预测火焰长度,应该以准确的方式计算辐射热损失。发现烟灰-湍流相互作用对本研究中使用的PDF敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号