首页> 外文期刊>International Journal of Rotating Machinery >Turbulent Flow and Endwall Heat Transfer Analysis in a 90° Turning Duct and Comparisons with Measured Data - Part II: Influence of Secondary Flow, Vorticity, Turbulent Kinetic Energy, and Thermal Boundary Conditions on Endwall Heat Transfer
【24h】

Turbulent Flow and Endwall Heat Transfer Analysis in a 90° Turning Duct and Comparisons with Measured Data - Part II: Influence of Secondary Flow, Vorticity, Turbulent Kinetic Energy, and Thermal Boundary Conditions on Endwall Heat Transfer

机译:90°弯管内的湍流和端壁传热分析以及与实测数据的比较-第二部分:二次流,涡度,湍动能和热边界条件对端壁传热的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Fundamental character of forced convection heat transfer to the endwall surface of a gas turbine passage can be simulated by using a 90°turning duct. Elevated operating temperatures in gas turbines require a thorough understanding of the turbulent thermal transport process in the three-dimensional end-wall boundary layers. The current study uses an in-house developed three-dimensional viscous flow solver to computationally investigate the heat transfer character near the endwall surfaces. Extensive heat transfer experiments also illuminate the local heat transfer features near the endwall surface and form a baseline data set to evaluate the computational method used. Present experimental effort at Re=342,190 employs a prescribed heat flux method to measure convective heat transfer coefficients on the end-wall surface. Local wall temperatures are measured with liquid crystal thermography. Local convective heat flux is determined by solving the electric potential equation with constant uniform potential that is applied along the inlet and exit boundaries of the endwall. The viscous flow and heat transfer computation algorithms are based on the same methods presented in Part I. The influence of the two primary counter-rotating vortices developing as a result of the balance of inertia and pressure forces on the measured and computed endwall heat transfer coefficients is demonstrated. It is shown that the local heat transfer on the endwall surface is closely related to the structure of the three-dimensional mean flow and the associated turbulent flow field. A comparison of the molecular/turbulent heat diffusion, wall shear stress, visualization of local turbulent kinetic energy are a few of the tasks that can be performed using a numerical approach in a relatively time efficient manner. The current numerical approach is capable of visualizing the near wall features that can not be easily measured in the flow field near the end-wall surfaces.
机译:强制对流传热到燃气轮机通道端壁表面的基本特征可以通过使用90°旋转导管来模拟。燃气轮机中升高的工作温度要求全面了解三维端壁边界层中的湍流热传递过程。当前的研究使用内部开发的三维粘性流求解器来计算研究端壁表面附近的传热特性。广泛的传热实验还阐明了端壁表面附近的局部传热特征,并形成了基准数据集来评估所使用的计算方法。目前在Re = 342,190处的实验工作采用规定的热通量方法来测量端壁表面上的对流传热系数。用液晶热成像法测量局部壁温。通过求解沿端壁的入口和出口边界施加的具有恒定均匀电势的电势方程,可以确定局部对流热通量。粘性流动和传热计算算法基于第一部分中介绍的相同方法。由于惯性和压力的平衡,两个主要的反向旋转涡流对测量和计算的端壁传热系数的影响被证明。结果表明,端壁表面上的局部传热与三维平均流的结构和相关的湍流场密切相关。分子/湍流热扩散的比较,壁面剪应力,局部湍动能的可视化是可以使用数值方法以相对高效的方式执行的一些任务。当前的数值方法能够可视化在端壁表面附近的流场中无法轻易测量的近壁特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号