首页> 外文期刊>International journal of modern physics, E. Nuclear physics >Study of the excited state of double-A hypernuclei by hyperspherical supersymmetric approach
【24h】

Study of the excited state of double-A hypernuclei by hyperspherical supersymmetric approach

机译:超球超对称方法研究双A超核的激发态

获取原文
获取原文并翻译 | 示例
           

摘要

Hyperspherical harmonics expansion (HHE) method has been applied to study the structure and Lambda Lambda dynamics for the ground and first excited states of low and medium mass double-Lambda hypernuclei in the framework of core+Lambda+Lambda three-body model. The Lambda Lambda potential is chosen phenomenologically while core-Lambda potential is obtained by folding the phenomenological LambdaN interaction into the density distribution of the core. The parameters of this effective LambdaN potential is obtained by the condition that they reproduce the experimental (or empirical) data for core-Lambda subsystem. The three-body (core+Lambda+Lambda) Schrodinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. This ground state energy and wave function are used to construct a partner potential. The three-body Schrodinger equation is solved once again for this partner potential. According to supersymmetric quantum mechanics, the ground state energy of this potential is exactly the wane as that of the first excited state of the potential used in the first step. In addition to the two-Lambda separation energy for the ground and first excited state, some geometrical quantities for the ground state of double-Lambda hypernuclei He-6(Lambda Lambda), Be-10(Lambda Lambda), C-14(Lambda Lambda), O-18(Lambda Lambda), Ne-22(Lambda Lambda), Mg-26(Lambda Lambda), Si-30(Lambda Lambda), S-34(Lambda Lambda), Ar-38(Lambda Lambda), (Lambda)Lambda Ca-42, Ti-46(Lambda Lambda), Cr-50(Lambda Lambda), Fe-54(Lambda Lambda), Ni-58(Lambda Lambda), Zn-62(Lambda Lambda), Ge-66(Lambda Lambda), Se-70(Lambda Lambda), Kr-74(Lambda Lambda), Zr-82(Lambda Lambda), Mo-86(Lambda Lambda), Ru-90(Lambda Lambda), Pd-94(Lambda Lambda), Pd-98(Lambda Lambda), Cd-102(Lambda Lambda), Sn-106(Lambda Lambda), Xe-132(Lambda Lambda), Ce-140(Lambda Lambda), Er-166(Lambda Lambda), Hf-180(Lambda Lambda), Pb-211(Lambda Lambda), Th-232(Lambda Lambda) are computed. These include the Lambda Lambda bond energy and various r.m.s. radii. [References: 60]
机译:在核心+ Lambda + Lambda三体模型的框架下,采用超球谐展开(HHE)方法研究低质量和中质量双Lambda超核的基态和第一激发态的结构和Lambda Lambda动力学。 Lambda Lambda电位是从现象学角度选择的,而核心Lambda电位是通过将现象学LambdaN相互作用折叠到核的密度分布中而获得的。该有效LambdaN势的参数是在它们重现核心Lambda子系统的实验(或经验)数据的条件下获得的。通过超球绝热逼近(HAA)求解三体(核+ Lambda + Lambda)薛定inger方程,得到基态能量和波动函数。该基态能量和波函数用于构建伙伴电位。三体薛定inger方程再次针对该伙伴势进行求解。根据超对称量子力学,该电势的基态能量正与第一步中使用的电势的第一激发态完全一样。除了双Lambda超核He-6(Lambda Lambda),Be-10(Lambda Lambda),C-14(Lambda)的基态和第一激发态的两Lambda分离能之外,还存在一些几何量Lambda),O-18(Lambda Lambda),Ne-22(Lambda Lambda),Mg-26(Lambda Lambda),Si-30(Lambda Lambda),S-34(Lambda Lambda),Ar-38(Lambda Lambda) ,(Lambda)Lambda Ca-42,Ti-46(Lambda Lambda),Cr-50(Lambda Lambda),Fe-54(Lambda Lambda),Ni-58(Lambda Lambda),Zn-62(Lambda Lambda),Ge -66(Lambda Lambda),Se-70(Lambda Lambda),Kr-74(Lambda Lambda),Zr-82(Lambda Lambda),Mo-86(Lambda Lambda),Ru-90(Lambda Lambda),Pd-94 (Lambda Lambda),Pd-98(Lambda Lambda),Cd-102(Lambda Lambda),Sn-106(Lambda Lambda),Xe-132(Lambda Lambda),Ce-140(Lambda Lambda),Er-166(Lambda)计算出Hf-180(Lambda Lambda),Pb-211(Lambda Lambda),Th-232(Lambda Lambda)。这些包括Lambda Lambda债券能源和各种r.m.s.半径[参考:60]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号