...
首页> 外文期刊>International Journal of Multiphase Flow >Stability of a liquid jet into incompressible gases and liquids: Part 2. Effects of the irrotational viscous pressure
【24h】

Stability of a liquid jet into incompressible gases and liquids: Part 2. Effects of the irrotational viscous pressure

机译:液体射流在不可压缩的气体和液体中的稳定性:第2部分。非旋转粘性压力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we investigate the effects of an irrotational, viscous pressure on the stability of a liquid jet into gases and liquids. The analysis extends our earlier work (part 1) in which the stability of the viscous jet was studied assuming that the motion and pressure are irrotational and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. The liquid jet is always unstable; at high Weber numbers the instability is dominated by capillary instability; at low W the instability is dominated by Kelvin-Helmholtz (KH) waves generated by pressures driven by the discontinuous velocity. In the irrotational analysis the viscosity is important but the effects of shear are neglected. In fact a discontinuous velocity is not compatible with the continuity of the tangential components of velocity and shear stress so that KH instability is not properly posed for exact study using the no-slip condition but some of the effects of viscosity can be ascertained using viscous potential flow. The theory is called viscous potential flow (VPF). Here we develop another irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by selecting viscous contributions to the irrotational pressure. These pressures generate a hierarchy of potential flows in powers of the viscosity, but only the first one, linear in viscosity, in the irrotational viscous stress, is thought to have physical significance. The tangential velocity and shear stress in an irrotational study cannot be made continuous, but the effects of the discontinuous velocity and stress in the mechanical energy balance can be removed "in the mean." This theory with the additional viscous pressure is called VCVPF, viscous correction of VPF. VCVPF is VPF with the additional pressures. The theory here cannot be compared with an exact solution, which would not allow the discontinuous velocity and stress. In other problems, like capillary instability, in which VCVPF can be compared with an exact solution, the agreements are uniformly excellent in the wave number when one of the fluids is gas and in good but not uniform, agreement when both fluids are liquids. (c) 2005 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了无粘性旋转压力对液体喷射到气体和液体中的稳定性的影响。该分析扩展了我们先前的工作(第1部分),在该工作中,假设运动和压力是不旋转的,并且通过界面处的法向应力平衡中的黏性法向应力的跃迁进入粘度,因此研究了粘性射流的稳定性。液体射流始终不稳定。在高韦伯数下,不稳定性主要由毛细管不稳定性决定;在低W时,不稳定性主要由不连续速度驱动的压力产生的开尔文-亥姆霍兹(KH)波主导。在非旋转分析中,粘度很重要,但忽略了剪切的影响。实际上,不连续的速度与速度和切应力的切向分量的连续性不兼容,因此使用正确的滑移条件无法正确地进行KH不稳定性的精确研究,但是可以使用粘性势来确定粘度的某些影响流。该理论称为粘性势流(VPF)。在这里,我们发展了另一种非旋转理论,其中通过选择对旋转压力的粘性贡献,消除了旋转能量切向速度和切应力的不连续性。这些压力产生了以粘度的幂为单位的势能流的层次结构,但是仅认为在旋转粘性应力中粘度呈线性的第一个具有物理意义。在非旋转研究中,切向速度和切应力不能连续,但不连续速度和应力对机械能平衡的影响可以“平均地”消除。这种具有附加粘性压力的理论称为VCVPF,即VPF的粘性校正。 VCVPF是带有附加压力的VPF。这里的理论不能与精确的解决方案进行比较,后者不允许出现不连续的速度和应力。在其他问题中,例如可以将VCVPF与精确解决方案进行比较的毛细管不稳定性,当一种流体是气体时,协议的波数一致均匀,而当两种流体都是液体时,协议的一致性好但不一致。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号