首页> 外文期刊>International Journal of Multiphase Flow >Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow
【24h】

Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow

机译:湍流中的气泡聚结:一种应用于微重力气泡管流动的湍流聚结机理模型

获取原文
获取原文并翻译 | 示例
           

摘要

A mechanistic model for bubble coalescence in turbulent flow is presented. The model is developed in two steps, which are essentially separable. In the first, expressions put forward earlier for the collision frequency and coalescence probability of equal bubbles during turbulence-driven, high-Reynolds-number collisions are extended t6 unequal bubbles and to take account of bubble-turbulence and bubble-bubble interactions. In the second, the resulting expression for the coalescence rate is used to derive source terms in the transport equations for the moment densities of the bubble-diameter distribution, which can readily be evaluated locally within a CFD code. The result is an extremely compact framework capable of providing predictions of the evolution of bubble size distributions in space and time at the expense of only two additional scalar transport equations. To provide an experimental validation of the model, some data on the bubble size evolution along a pipe flow under microgravity conditions have been used. Microgravity experiments on gas-liquid bubbly pipe flows have been carried out during parabolic flights in aircraft. Bubble diameter distributions have been determined from high speed video recording and image processing. In the absence of gravity, collisions between bubbles smaller than the integral length scale of turbulence are primarily due to turbulence. The results from the calculation are in good agreement with the experimental data. The model is then used to predict the influence of the void fraction, the bubble size at the pipe inlet and the liquid mean velocity on the coalescence rate.
机译:提出了湍流中气泡聚结的力学模型。该模型分两个步骤开发,这两个步骤基本上是可分离的。首先,较早提出的表达式是在湍流驱动的高雷诺数碰撞过程中,相等气泡的碰撞频率和合并概率扩展了t6个不等距气泡,并考虑了气泡-湍流和气泡-气泡的相互作用。在第二种方法中,合并率的结果表达式用于导出气泡直径分布的矩密度的运输方程式中的源项,这些项可以在CFD代码中方便地进行局部评估。结果是一个非常紧凑的框架,该框架能够仅以两个额外的标量传输方程为代价,就可以预测气泡大小在空间和时间上的演变。为了提供模型的实验验证,已使用了一些有关微重力条件下沿管道流动的气泡尺寸演变的数据。在飞机的抛物线飞行中已经进行了气液气泡管流动的微重力实验。气泡直径分布已经从高速视频记录和图像处理中确定。在没有重力的情况下,小于湍流整体长度尺度的气泡之间的碰撞主要是由于湍流引起的。计算结果与实验数据吻合良好。然后使用该模型预测空隙率,管道入口处的气泡大小以及液体平均速度对聚结速度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号