...
首页> 外文期刊>International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM >Substructuring in the implicit simulation of single point incremental sheet forming: The incrementally updated approach
【24h】

Substructuring in the implicit simulation of single point incremental sheet forming: The incrementally updated approach

机译:单点增量板料成形隐式仿真中的子结构:增量更新方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a direct substructuring method to reduce the computing time of implicit simulations of single point incremental forming (SPIF). Substructuring is used to divide the finite element (FE) mesh into several non-overlapping parts. Based on the hypothesis that plastic deformation is localized, the substructures are categorized into two groups: the plastic - nonlinear - substructures and the elastic - pseudo-linear - substructures. The plastic substructures assemble a part of the FE mesh that is in contact with the forming tool; they are iteratively updated respecting all nonlinearities. The elastic substructures model the elastic deformation of the rest of the FE mesh. For these substructures, the geometrical and the material behaviour are assumed linear within the increment. The stiffness matrices and the internal force vectors are calculated at the beginning of each increment then they are statically condensed to eliminate the internal degrees of freedom (DOF). In the iteration process the condensed stiffness matrices for the elastic substructures are kept constant. The condensed internal force vectors are updated by the multiplication of the condensed stiffness matrices and the displacement increments. After convergence, any geometrical and material nonlinearity for the elastic substructures are nonlinearly updated. The categorization of substructures in plastic and elastic domains is adapted during the simulation to capture the tool motion. The resulting, plastic and condensed elastic, set of equations is solved on a single processor. In an example with 1600 shell elements, the presented substructuring of the SPIF implicit simulation is 2.4 times faster than the classical implicit simulation.
机译:本文提出了一种直接子结构化方法,以减少单点增量成形(SPIF)隐式仿真的计算时间。子结构用于将有限元(FE)网格划分为几个不重叠的部分。基于塑性变形是局部化的假设,将子结构分为两类:塑性-非线性-子结构和弹性-拟线性-子结构。塑料子结构组装了有限元网格的一部分,该部分与成型工具接触。在考虑所有非线性的情况下对它们进行迭代更新。弹性子结构模拟了有限元网格其余部分的弹性变形。对于这些子结构,假定几何和材料行为在增量内是线性的。刚度矩阵和内力矢量在每个增量的开始处计算,然后将其静态压缩以消除内部自由度(DOF)。在迭代过程中,弹性子结构的压缩刚度矩阵保持恒定。压缩的内力矢量通过压缩的刚度矩阵和位移增量的乘积来更新。收敛之后,将对弹性子结构的任何几何和材料非线性进行非线性更新。在仿真过程中,可调整塑性域和弹性域中子结构的分类,以捕获工具运动。所得的塑性和压缩弹性方程组在单个处理器上求解。在具有1600个壳单元的示例中,SPIF隐式仿真的呈现子结构比经典隐式仿真快2.4倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号