...
首页> 外文期刊>International journal of nonlinear sciences and numerical simulation >On the Mutual Effect of the Turbulent Dispersion Model and Thermophoresis on Nanoparticle Deposition
【24h】

On the Mutual Effect of the Turbulent Dispersion Model and Thermophoresis on Nanoparticle Deposition

机译:湍流扩散模型和热泳对纳米粒子沉积的相互影响

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoparticles applications, whether for pharmaceuticals, for environmental assessment or for evaluation of global climatic has led to the use of CFD tools to improve the understanding of their dynamical behaviour (transport, deposition and coagulation). Due to small particle sizes and low Stokes numbers, nanoparticles are typically considered to deposit at the wall as a combined result of Brownian motion and turbulent dispersion. To simulate these mechanisms in this work, the two-phase flow is computed using a RANS model (Reynolds Averaged Navier-Stokes) for the mean fluid properties, and a Lagrangian tracking approach for the dispersed phase in which the fluctuating fluid velocity at particle location, that ensures the particle turbulent dispersion, is predicted through a user implemented Langevin-based dispersion model. When a temperature gradient is present, the aerosol particles experience a thermophoretic force in addition to the drag and the Brownian forces. Depending on the temperature gradient and particle size, the thermophoretic force could become the predominant deposition mechanism. This size dependence makes it important to appropriately choose the turbulent dispersion model in wall-bounded turbulent flows. Actually, in most commercial codes, the turbulent dispersion of particles is predicted using the so-called Eddy Interaction Model (EIM), whose major drawback is that it cannot account for turbulence non-homogeneity, thus leading to some unphysical accumulation of low-inertia particles near the wall and therefore to an overestimation of the deposition velocity which is accentuated by thermophoresis. This study shows that turbulent and thermophoretic depositions are not completely independent, since thermophoresis enhances the deposition of particles which are sensitive to the turbulent dispersion model.
机译:纳米颗粒的应用,无论是用于药物,用于环境评估还是用于全球气候评估,都已导致使用CFD工具来增进人们对其动力学行为(运输,沉积和凝结)的理解。由于小尺寸和低斯托克斯数,通常将纳米粒子作为布朗运动和湍流分散的结果沉积在壁上。为了在这项工作中模拟这些机制,使用平均流体特性的RANS模型(雷诺平均Navier-Stokes)和分散相的拉格朗日跟踪方法(其中颗粒位置处的流体速度波动)来计算两相流。可通过用户实施的基于Langevin的色散模型来预测,确保粒子湍流的色散。当存在温度梯度时,除了阻力和布朗力之外,气溶胶颗粒还会经历热泳力。取决于温度梯度和粒度,热泳力可能成为主要的沉积机理。这种尺寸依赖性使得在有边界的湍流中适当选择湍流扩散模型很重要。实际上,在大多数商业法规中,使用所谓的涡流相互作用模型(EIM)来预测颗粒的湍流弥散,其主要缺点是无法解释湍流的非均质性,从而导致一些低惯性的非物理积累壁附近的颗粒并因此高估了通过热泳法加重的沉积速度。这项研究表明,湍流和热泳沉积不是完全独立的,因为热泳增强了对湍流弥散模型敏感的粒子的沉积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号