...
首页> 外文期刊>International journal of nanotechnology and applications >A Proposed DLCCS Algorithm for High Speed Operation & Implementation on FPGA
【24h】

A Proposed DLCCS Algorithm for High Speed Operation & Implementation on FPGA

机译:一种提出的DLCCS高速运算算法及其在FPGA上的实现

获取原文
获取原文并翻译 | 示例
           

摘要

In the modern era of electronics and communication, the basic logic operations like addition of multiple data(s), followed by integrating those multiple adder(s) to design complex analog/digital circuits using VLSI technology requires low power, less area and high speed constrains. This paper depicts the objective to design a very fast adder to solve various operations starting from the basic combinational circuits to n~(th) higher order complex mathematical functions. The proposed D Latched Conditional Carry Selection (DLCCS) algorithm is proposed to design the fastest adder after a thorough analysis of various adder(s) using Xilinx 1SE 14.2. Firstly, Orthodox Carry Select Adder (OCSLA) using Ripple Carry Adder (RCA) is designed and simulated. OCSLA with pipelining (PCSLA) structure can provide low power and comaparative less area but due to usage of each 2 bit Full Adders the pad to pad delays get increased which is undesired. On the other hand, the OCSLA area is about as twice as that of the RCA, for a given bit-width. The ADD ONE Carry Select Adder (A1CSLA) relies on optimizing the OCSLA by replacing the adder with C_(IN)=1 by a less expensive logic, known as "ADD-ONE logic", where a significant amount of reduction in path delay has been observed. The regular CSLA is not area efficient because it uses multiple pairs of Ripple Carry Adders (RCA) to generate partial' sum and carry. To overcome the above problem, the regular CSLA is modified by using n-bit Binary to Excess-1 Code converters (BEC) to improve the speed of addition. Though, in BE1 CSLA the major limitation is that due to don't care condition there may be some mismatch in desire output. In our proposed DLCCS algorithm based adder, the BEC is replaced by a D-Latch. Initially when CLK=1, the output of the RCA is fed as input to the D-Latch and the output of the D-latch follows the input and given as an input to the multiplexer. When CLK=0, the last state of the D input is trapped and held in the latch and therefore the output from the RCA is directly given as an input to the multiplexer without any delay. Now the multiplexer selects the sum bit according to the input carry which is the selection bit and the inputs of the multiplexer are the outputs obtained when CLK=1 and 0. Thus the proposed DLCCS algorithm based CSLA is implemented by Verilog source coding, followed by simulation and synthesis. Significant amount of less power and high speed is obtained after FPGA implementation. All the designing of adder(s) is done using Xilinx 1SE 14.2 and synthesized successfully in the FPGA Virtex 6 target device operated at 64.516 MHz clock frequency.
机译:在现代的电子和通信时代,基本逻辑运算(例如添加多个数据),然后集成这些多个加法器以使用VLSI技术设计复杂的模拟/数字电路,要求低功耗,小面积和高速度约束。本文描述了设计一个快速加法器的目的,以解决从基本组合电路到第n个高阶复数数学函数的各种运算。在使用Xilinx 1SE 14.2全面分析了各种加法器之后,提出了建议的D锁存有条件进位选择(DLCCS)算法以设计最快的加法器。首先,设计并仿真了使用纹波进位加法器(RCA)的正统进位选择加法器(OCSLA)。具有流水线(PCSLA)结构的OCSLA可以提供低功耗和相对较小的面积,但是由于使用了每个2位的全加器,焊盘到焊盘的延迟会增加,这是不希望的。另一方面,对于给定的位宽,OCSLA面积约为RCA的两倍。 ADD ONE进位选择加法器(A1CSLA)依靠优化OCSLA,方法是用一种较便宜的逻辑(称为“ ADD-ONE逻辑”)将C_(IN)= 1替换加法器,从而大大减少了路径延迟被观察到。常规CSLA的区域效率不高,因为它使用多对纹波进位加法器(RCA)来生成部分和。为了克服上述问题,通过使用n位二进制到多余1码转换器(BEC)修改常规CSLA,以提高相加速度。但是,在BE1 CSLA中,主要限制是由于不受条件限制,期望输出可能会有些不匹配。在我们提出的基于DLCCS算法的加法器中,BEC被D-Latch取代。最初,当CLK = 1时,RCA的输出作为输入提供给D-Latch,D-latch的输出跟随输入,并作为输入提供给多路复用器。当CLK = 0时,D输入的最后状态被捕获并保持在锁存器中,因此RCA的输出直接作为输入提供给多路复用器,没有任何延迟。现在,多路复用器根据输入进位选择总和位,输入进位是选择位,并且多路复用器的输入是当CLK = 1和0时获得的输出。因此,建议的基于CSLCA的DLCCS算法是通过Verilog源编码实现的,随后是模拟和综合。在FPGA实施后,可获得大量的低功耗和高速度。所有加法器的设计均使用Xilinx 1SE 14.2完成,并在以64.516 MHz时钟频率运行的FPGA Virtex 6目标器件中成功合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号