首页> 外文期刊>International Journal of Fracture >Phase field simulation of domain structures in cracked ferroelectrics
【24h】

Phase field simulation of domain structures in cracked ferroelectrics

机译:裂纹铁电体中畴结构的相场模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The fracture of ferroelectrics is a complex process which is influenced by various factors, among which are the domain switching near the crack tip, the crack face boundary conditions and the applied electric field. Domain switching near crack tips induces major local nonlinearity, while the crack face boundary conditions vary considerably due to different working conditions. In this work, a phase field model and a generalization of the configurational force theory into this model are used to investigate the microstructure around the crack tip and to quantitatively study the influence of the applied electric field and the crack face boundary conditions (permeable, impermeable, semi-permeable and energetically consistent). Evaluation of the fracture properties is done by the nodal configurational force atThe generous support by the Alexander von Humboldt Foundation is gratefully acknowledged. the crack tip based on the generalized configurational force theory. Results show that the induced domain structure relies significantly on the loading and on the surface boundary conditions. Among the four different conditions considered, the energetically consistent conditions lead to the smallest crack driving force, and the permeable conditions lead to the largest crack driving force. Calculations also show that positive electric fields tend to inhibit fracture, whereas negative electric fields tend to promote fracture.
机译:铁电体的断裂是一个复杂的过程,受多种因素影响,其中包括裂纹尖端附近的畴转换,裂纹面边界条件和施加的电场。裂纹尖端附近的区域切换引起主要的局部非线性,而裂纹面边界条件由于不同的工作条件而变化很大。在这项工作中,使用相场模型和构型力理论对该模型的推广,以研究裂纹尖端周围的微观结构,并定量研究施加电场和裂纹面边界条件(渗透性,非渗透性)的影响。 ,半渗透性和能量一致)。断裂特性的评估是通过节点的构型力来完成的。非常感谢亚历山大·冯·洪堡基金会的大力支持。基于广义构型力理论的裂纹尖端。结果表明,诱导的畴结构显着依赖于载荷和表面边界条件。在所考虑的四个不同条件中,能量一致的条件导致最小的裂纹驱动力,而渗透性条件导致最大的裂纹驱动力。计算还表明,正电场倾向于抑制断裂,而负电场倾向于促进断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号