首页> 外文期刊>Australian Journal of Earth Sciences >Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles
【24h】

Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles

机译:在了解扬子鳄河流铀矿田中的Kombolgie子群和与不整合有关的铀矿藏方面的进展,以及如何使用岩溶化学原理进行勘探

获取原文
获取原文并翻译 | 示例
           

摘要

The Alligator Rivers Uranium Field (ARUF) includes the mined and unmined Jabiluka, Ranger, Koongarra and Nabarlek unconformity-related uranium deposits and several small prospects including the newly discovered King River prospect. Uranium mineralisation is hosted by a variety of metamorphosed Nimbuwah Domain lithologies that are unconformably overlain by the Kombolgie Subgroup, a basin package of unmetamorphosed arenites and mafic volcanics. All of the uranium deposits and prospects preserve an identical alteration assemblage that is subdivided into a distal and proximal alteration zone. The distal alteration zone comprises an assemblage of sericite and chlorite that replace albite and amphibole. In some cases, this alteration can be traced 41000 m from the proximal alteration zone that is dominated by uraninite, hematite, chlorite and sericite. Uranium precipitated in the basement as uraninite at 1680 Ma at around 2008C from a fluid having d18Ofluid values of 3.0+2.8% and dDfluid values of 728+13% VSMOW reflecting an evolved marine source. These geochemical properties are indistinguishable from those recorded by diagenetic illite and chlorite that were collected from the Kombolgie Subgroup sandstones across the ARUF. The illite and chlorite formed in diagenetic aquifers, and where these aquifers intersected favourable basement rocks, such as those containing graphite or other reductants, U was precipitated as uraninite. Therefore, it is proposed that the Kombolgie Subgroup is the source for fluids that formed the deposits. A post-ore alteration assemblage dominated by chlorite, but also comprising quartz+dolomite+sulfide veins cut the uranium mineralisation at all deposits and has historically been recorded as part of the syn-ore mineralisation event. However, these minerals formed anywhere between 1500 to 630 Ma from fluids that have distinctly lower d18Ofluid values around 1.5% and lower dDfluid values around 745% reflecting a meteoric water origin. Despite unconformity-related uranium deposits having a large alteration halo, they remain difficult to find. The subtle alteration of albite to sericite several hundred metres from mineralisation occurs in isolation of any increase in trace elements such as U and radiogenic Pb and can be difficult or impossible to identify in hand specimen. Whole rock geochemical data indicate that Pearce Element Ratio (PER) analysis and General Element Ratio (GER) analysis may vector into this subtle alteration because it does not rely on an increase in trace elements to identify proximity to ore. PER and GER plots, Al/Ti vs (2Ca t Na t K)/Ti, Na/Al vs (Na t K)/Al, K/Al vs (Na t K)/Al and (Fe t Mg)/Al vs (Na t K)/Al provide a visual guide that readily distinguish unaltered from altered samples. A plot of (Na t K)/Al and (Fe t Mg)/Al on the x-axis against the concentration of trace elements on the y-axis reveals that U, Pb, Mo, Cu, B, Br, Ce, Y, Li, Ni, V and Nd are associated with the most intensely altered samples. The lithogeochemical vectors should aid explorers searching for uranium mineralisation in a prospective basin environment, but exploration must first focus on the characteristics of the basin to assess its mineralisation potential. A holistic model that describes the evolution of the Kombolgie Subgroup from deposition through diagenesis to formation of the uranium deposits in the underlying basement rocks is presented and has application to other basins that are considered prospective for unconformity-related uranium deposits. The model outlines that explorers will need to consider the thickness of the sedimentary pile, its lithological composition relative to depositional setting, the depth to which the sediments were buried during diagenesis and the degree of diagenesis achieved, which may be time dependant, before deciding on the prospectivity of the basin.
机译:鳄鱼河铀矿田(ARUF)包括已开采和未开采的Jabiluka,Ranger,Koongarra和Nabarlek与不整合有关的铀矿床,以及一些小矿区,包括新发现的King River矿床。铀矿化是由多种变质的Nimbuwah Domain岩性所主导,这些岩性被Kombolgie子群(未变质的贝里尼特和镁铁质火山岩的盆地包裹)不整合地覆盖。所有铀矿床和铀矿床都保留着相同的蚀变组合,可分为远侧和近侧蚀变带。远侧蚀变区包括绢云母和绿泥石的组合,以代替钠长石和闪石。在某些情况下,可以从近端蚀变带追踪41000 m处,该蚀变带以尿素,赤铁矿,绿泥石和绢云母为主。铀在2008年前后于1680 Ma在地下室中作为铀尿素沉淀,其流体的d18Ofluid值为3.0 + 2.8%,dDfluid值为728 + 13%VSMOW,反映了海洋资源的演变。这些地球化学性质与从整个ARUF的Kombolgie亚组砂岩中收集的成岩伊利石和绿泥石所记录的那些没有区别。在成岩含水层中形成伊利石和绿泥石,这些含水层与有利的基岩相交,例如含有石墨或其他还原剂的基岩,U沉淀为尿素。因此,建议Kombolgie子组是形成沉积物的流体的来源。矿石后蚀变组合主要由亚氯酸盐构成,但也包括石英+白云石+硫化物脉,削减了所有矿床的铀矿化,历史上已被记录为同矿成矿事件的一部分。但是,这些矿物是由流体形成的,介于1500Ma至630Ma之间,其d18Ofluid值明显降低了约1.5%,而dDfluid值则降低了约745%,这反映了水的起源。尽管与不整合有关的铀矿具有较大的蚀变晕,但仍很难找到它们。从矿化到几百米处,钠长石微妙地变成绢云母,是由于微量元素如U和放射性Pb的增加而发生的,可能难以或不可能在手标本中鉴定出来。整个岩石地球化学数据表明,由于不依赖于痕量元素的增加来确定与矿石的接近度,因此皮尔元素比率(PER)分析和通用元素比率(GER)分析可能会进入这种细微的变化。 PER和GER​​图,Al / Ti对(2Ca t Nat K)/ Ti,Na / Al对(Na t K)/ Al,K / Al对(Na t K)/ Al和(Fe t Mg)/ Al vs(Na t K)/ Al提供了直观的指南,可以轻松地区分未改变的样品和未改变的样品。在x轴上的(Na t K)/ Al和(Fe t Mg)/ Al与y轴上的痕量元素浓度的关系图表明,U,Pb,Mo,Cu,B,Br,Ce, Y,Li,Ni,V和Nd与变化最剧烈的样品相关。岩石地球化学载体应有助于勘探者在潜在盆地环境中寻找铀矿化,但是勘探必须首先关注该盆地的特征以评估其矿化潜力。提出了一个整体模型,该模型描述了Kombolgie亚组从沉积到成岩作用到下层基底岩石中铀矿床形成的演化过程,并已应用于其他认为与不整合相关的铀矿床有前景的盆地。该模型概述了勘探者在决定选择之前,需要考虑沉积桩的厚度,相对于沉积环境的岩性成分,成岩过程中沉积物的埋藏深度以及成岩程度,这可能与时间有关。盆地的前景。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号