首页> 外文期刊>International Journal for Numerical Methods in Fluids >High-order ADER-WENO ALE schemes on unstructured triangular meshes - application of several node solvers to hydrodynamics and magnetohydrodynamics
【24h】

High-order ADER-WENO ALE schemes on unstructured triangular meshes - application of several node solvers to hydrodynamics and magnetohydrodynamics

机译:非结构三角形网格上的高阶ADER-WENO ALE方案-多个节点求解器在流体力学和磁流体动力学中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we present a class of high-order accurate cell-centered arbitrary Lagrangian-Eulerian (ALE) one-step ADER weighted essentially non-oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two-dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space-time Galerkin predictor allows the schemes to be high order accurate also in time by using an element-local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one-dimensional half-Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten-Lax-van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level t~n with the new ones at the next time level t~(n+1). If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high-order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration.
机译:在本文中,我们提出了一类高阶准确的以细胞为中心的任意拉格朗日欧拉(ALE)一步ADER加权基本非振荡(WENO)有限体积方案,用于求解二维非线性双曲守恒律。非结构化三角形网格。通过WENO重建算法可以实现高空间精度,而局部时空Galerkin预测器也可以通过在移动网格上使用控制PDE的元素局部弱公式,使这些方案在时间上也具有高精度。可以通过在三个不同的节点求解器之间进行选择来计算网格运动,这是本文中首次进行比较:节点速度可以通过以下方式获得:(i)作为节点周围状态之间的算术平均值,例如由Cheng和Shu提出,或者(ii)作为Maire建议的围绕一个顶点的多个一维半黎曼问题的解决方案,或者(iii)通过使用Balsara等人最近提出了真正多维的Harten-Lax-van Leer Riemann求解器。一旦节点求解器确定了顶点速度并因此确定了新的节点位置,然后通过将在旧时间级别t〜n处的顶点位置与在下一个时间级别t处的新顶点位置相连接的直边构造局部网格运动。 〜(n + 1)。如果需要,可以在此处引入重新分区步骤,以克服网格缠结或高度变形的元素。最终的ALE有限体积方案直接基于控制PDE系统的时空守恒公式,因此,由于ALE通量已经适当考虑了重新分区的几何形状,因此不需要额外的重新映射阶段。从这个意义上讲,我们的方案属于直接ALE方法的范畴。此外,通过构造方案满足几何守恒定律。我们将本文提出的高阶算法应用于可压缩气体动力学的欧拉方程,以及理想的经典和相对论的磁流体动力学方程。我们显示了数值收敛结果,其时空精度达到了五阶精度,同时还考虑了所考虑的每个双曲线系统的一些经典数值测试问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号