...
首页> 外文期刊>Australian Journal of Chemistry: A Journal for the Publication of Original Research in All Branches of Chemistry >Chemical Activation in Azide and Nitrene Chemistry: Methyl Azide, Phenyl Azide, Naphthyl Azides, Pyridyl Azides, Benzotriazoles, and Triazolopyridines
【24h】

Chemical Activation in Azide and Nitrene Chemistry: Methyl Azide, Phenyl Azide, Naphthyl Azides, Pyridyl Azides, Benzotriazoles, and Triazolopyridines

机译:叠氮化物和硝基化学中的化学活化:叠氮化甲基,苯基叠氮化物,萘基叠氮化物,吡啶基叠氮化物,苯并三唑和三唑并吡啶

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Chemical activation (the formation of 'hot' molecules due to chemical reactions) is ubiquitous in flash vacuum thermolysis (FVT) reactions, and awareness of this phenomenon is indispensable when designing synthetically useful gas-phase reactions. Chemical activation is particularly prevalent in azide chemistry because the interesting singlet nitrenes are high-energy intermediates, and their reactions are highly exothermic. Consequently, chemical activation is observed in the isomerization of methylnitrene CH3N to methylenimine (methanimine) CH2=NH, facilitating the elimination of hydrogen to form HCN or HNC. Rearrangements of phenylnitrene, 1-and 2-naphthylnitrenes, and 2-, 3-and 4-pyridylnitrenes afford cyanocyclopentadiene, 3-and 2-cyanoindenes, and 2-and 3-cyanopyrroles, all showing the effects of chemical activation by undergoing facile interconversion of isomers. Chemical activation can often be reduced or removed entirely by increasing the pressure, thereby promoting collisional deactivation. Larger molecules having more degrees of freedom are better able to dissipate excess energy; therefore the effects of chemical activation are less pronounced or completely absent in the formation of 3-cyanoindole and 1-cyanobenzimidazoles from 3-and 4-quinolylnilrcnes and 4-quinazolinylnitrcncs, respectively. In compounds possessing nitro groups, chemical activation can cause the loss of the nitro group at nominal temperatures far below those normally needed to cleave the C-NO2 bond.
机译:在闪蒸真空热解(FVT)反应中,普遍存在化学活化(由于化学反应而形成“热”分子)的情况,在设计合成有用的气相反应时,必不可少的对此现象的认识。在叠氮化物化学中,化学活化特别普遍,因为有趣的单线态氮烯是高能中间体,并且它们的反应是高度放热的。因此,在甲基氮化物CH 3 N异构化为亚甲基亚胺(甲基亚胺)CH 2 = NH的过程中观察到化学活化,促进了氢的消除以形成HCN或HNC。苯基亚硝基,1-和2-萘基氮烯以及2-,3-和4-吡啶基氮烯的重排提供了氰基环戊二烯,3-和2-氰基茚,以及2-和3-氰基吡咯,它们均通过容易的相互转化而显示出化学活化作用。异构体。通常可以通过增加压力来减少或完全消除化学活化,从而促进碰撞失活。具有更大自由度的较大分子能够更好地耗散多余的能量;因此,化学活化作用在分别由3-和4-喹啉基腈和4-喹唑啉基硝基化合物形成3-氰基吲哚和1-氰基苯并咪唑的过程中不太明显或完全没有。在具有硝基基团的化合物中,化学活化会导致标称温度下的硝基基团丢失,该温度远低于裂解C-NO2键通常所需的温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号