首页> 外文期刊>Aquatic geochemistry >Chemical Weathering of Pleistocene Glacial Outwash Sediments: A Comparison of Contemporary and Longterm Rates for Soils and Groundwaters
【24h】

Chemical Weathering of Pleistocene Glacial Outwash Sediments: A Comparison of Contemporary and Longterm Rates for Soils and Groundwaters

机译:更新世冰川剥蚀沉积物的化学风化:土壤和地下水当代速率和长期速率的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Pore water solutes increase to depths of up to six meters in unsaturated 10 kyrold glacial outwash sediments in the Trout Lake Basin of northern Wisconsin, USA. After correction for evapotranspiration, these increases reflect weathering gradients produced from plagioclase, calc-magnesium pyroxenes, and amphiboles. In spite of relatively abundant K-feldspar, solute K and Rb reflect negative gradients produced by nutrient plant uptake and cycling. Weathering rates are calculated from solute gradients (bsolute), hydraulic fluxes (qh), volumetric BET surface areas (S_v), and mineral-specific stoichiometric coefficients (β) such that R_(solute) = qh/b_(solute)β S_v Average plagioclase weathering rates (R_(plag) = 1.6–3.1 9 10~(-15) mol m~(-2) s~(-1)) bracket rates calculated for other Quaternary glaciated landscapes. Deeper soil pore waters are as chemically concentrated as underlying groundwaters which, based on hydrologic analyses, have traveled distances up to several kilometers over transient times of hundreds of years. Pore water recharge essentially sets solute compositions close to thermodynamic saturation, thus limiting additional weathering potential along these ground water flow paths. Solid-state elemental and mineral gradients, unlike solute gradients, are essentially invariant with soil depth, reflecting low weathering intensities produced over the relatively short geologic time since sediment deposition. A spreadsheet calculator reproduces modest mass loses from such profiles and indicates that present-day weathering is kinetically and not saturation/transport controlled.
机译:在美国威斯康星州北部的鳟鱼湖盆地,孔隙水溶质在不饱和的10 Krold冰川冲积沉积物中的深度增加到了六米。校正蒸散量后,这些增加反映了斜长石,钙镁辉石和闪石产生的风化梯度。尽管钾长石相对丰富,但溶质K和Rb反映了养分植物吸收和循环产生的负梯度。根据溶质梯度(绝对值),水力通量(qh),BET体积比表面积(S_v)和矿物比化学计量系数(β)计算风化率,从而使R_(溶质)= qh / b_(溶质)βS_v平均斜长石风化率(R_(plag)= 1.6–3.1 9 10〜(-15)mol m〜(-2)s〜(-1))支架率是针对其他第四纪冰川景观计算的。更深层的土壤孔隙水与基础地下水的化学浓缩程度相同,根据水文学分析,这些地下水在数百年的瞬变时间内已经行进了几千米的距离。孔隙水的补给基本上使溶质组成接近热力学饱和度,从而限制了沿这些地下水流动路径的额外耐候性。与溶质梯度不同,固态元素和矿物梯度在土壤深度上基本不变,反映出自沉积物沉积以来,在相对较短的地质时间内产生的低风化强度。电子表格计算器可从这些分布图中再现适度的质量损失,并指示当今的风化是动力学的,而不是饱和度/传输率控制的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号