首页> 外文期刊>Antiviral Research >Understanding the molecular basis of HBV drug resistance by molecular modeling.
【24h】

Understanding the molecular basis of HBV drug resistance by molecular modeling.

机译:通过分子建模了解HBV耐药性的分子基础。

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the significant successes in the area of anti-HBV agents, resistance and cross-resistance against available therapeutics are the major hurdles in drug discovery. The present investigation is to understand the molecular basis of drug resistance conferred by the B and C domain mutations of HBV-polymerase on the binding affinity of five anti-HBV agents [lamivudine (3TC, 1), adefovir (ADV, 2), entecavir (ETV, 3), telbivudine (LdT, 4) and clevudine (l-FMAU, 5)]. In this regard, homology modeled structure of HBV-polymerase was used for minimization, conformational search and induced fit docking followed by binding energy calculation on wild-type as well as on mutant HBV-polymerases (L180M, M204V, M204I, L180M+M204V, L180M-M204I). Our studies suggest a significant correlation between the fold resistances and the binding affinity of anti-HBV nucleosides. The binding mode studies reveals that the domain C residue M204 is closely associated with sugar/pseudosugar ring positioning in the active site. The positioning of oxathiolane ring of 3TC (1) is plausible due the induced fit orientation of the M204 residue in wild-type, and further mutation of M204 to V204 or I204 reduces the final binding affinity which leads to the drug resistance. The domain B residue L180 is not directly close ( approximately 6A) to the nucleosideucleoside analogs, but indirectly associated with other active-site hydrophobic residues such as A87, F88, P177 and M204. These five hydrophobic residues can directly affect on the incoming nucleoside analogs in terms of its association and interaction that can alter the final binding affinity. There was no sugar ring shifting observed in the case of adefovir (2) and entecavir (3), and the position of sugar ring of 2 and 3 is found similar to the sugar position of natural substrate dATP and dGTP, respectively. The exocyclic double bond of entecavir (3) occupied in the backside hydrophobic pocket (made by residues A87, F88, P177, L180 and M204), which enhances the overall binding affinity. The active site binding of LdT (4) and l-FMAU (5) showed backward shifting along with upward movement without enforcing M204 residue and this significant different binding mode makes these molecules as polymerase inhibitors, without being incorporated into the growing HBV-DNA chain. Structural results conferred by these l- and d-nucleosides, explored the molecular basis of drug resistance which can be utilized for future anti-HBV drug discovery.
机译:尽管在抗HBV药物领域取得了巨大的成功,但对现有疗法的耐药性和交叉耐药性却是药物研发的主要障碍。本研究旨在了解HBV聚合酶的B和C结构域突变对五种抗HBV药物[拉米夫定(3TC,1),阿德福韦(ADV,2),恩替卡韦]的结合亲和力的分子基础。 (ETV,3),替比夫定(LdT,4)和克罗夫定(l-FMAU,5)]。在这方面,将HBV聚合酶的同源性建模结构用于最小化,构象搜索和诱导拟合对接,然后对野生型以及突变HBV聚合酶(L180M,M204V,M204I,L180M + M204V, L180M-M204I)。我们的研究表明抗-HBV核苷的抗折性和结合亲和力之间存在显着相关性。结合模式研究表明,结构域C残基M204与糖/伪糖环在活性位点的定位紧密相关。 3TC(1)的氧杂硫杂环戊烷环的定位是合理的,这是由于M204残基在野生型中的诱导适应取向,并且M204进一步突变为V204或I204降低了最终的结合亲和力,从而导致了耐药性。结构域B残基L180与核苷/核苷类似物不直接靠近(约6A),但与其他活性位点疏水残基(如A87,F88,P177和M204)间接相关。就其缔合和相互作用而言,这五个疏水残基可直接影响传入的核苷类似物,从而改变最终的结合亲和力。阿德福韦(2)和恩替卡韦(3)没有观察到糖环移位,发现2和3的糖环位置分别类似于天然底物dATP和dGTP的糖位置。恩替卡韦(3)的环外双键占据了背面疏水口袋(由残基A87,F88,P177,L180和M204制成),从而增强了整体结合亲和力。 LdT(4)和l-FMAU(5)的活性位点结合显示出向后移动以及向上移动,而没有施加M204残基,这种显着不同的结合方式使这些分子成为聚合酶抑制剂,而没有被纳入到正在增长的HBV-DNA链中。这些l和d核苷赋予的结构性结果探索了耐药性的分子基础,可将其用于未来的抗HBV药物发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号