...
首页> 外文期刊>Nanotechnology >The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression
【24h】

The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression

机译:单轴压缩下纳米粒子含有石墨烯泡沫材料的力学性能和微观变形机理

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoparticle-contained graphene foams have found more and more practical applications in recent years, which desperately requires a deep understanding on basic mechanics of this hybrid material. In this paper, the microscopic deformation mechanism and mechanical properties of such a hybrid material under uniaxial compression, that are inevitably encountered in applications and further affect its functions, are systematically studied by the coarse-grained molecular dynamics simulation method. Two major factors of the size and volume fraction of nanoparticles are considered. It is found that the constitutive relation of nanoparticle filled graphene foam materials consists of three parts: the elastic deformation stage, deformation with inner re-organization and the final compaction stage, which is much similar to the experimental measurement of pristine graphene foam materials. Interestingly, both the initial and intermediate modulus of such a hybrid material is significantly affected by the size and volume fraction of nanoparticles, due to their influences on the microstructural evolution. The experimentally observed 'spacer effect' of such a hybrid material is well re-produced and further found to be particle-size sensitive. With the increase of nanoparticle size, the micro deformation mechanism will change from nanoparticles trapped in the graphene sheet, slipping on the graphene sheet, to aggregation outside the graphene sheet. Beyond a critical relative particle size 0.26, the graphene-sheet-dominated deformation mode changes to be a nanoparticle-dominated one. The final microstructure after compression of the hybrid system converges to two stable configurations of the 'sandwiched' and 'randomly-stacked' one. The results should be helpful not only to understand the micro mechanism of such a hybrid material in different applications, but also to the design of advanced composites and devices based on porous materials mixed with particles.
机译:近年来,含纳米颗粒的石墨烯泡沫材料得到了越来越多的实际应用,这迫切需要对这种杂化材料的基本力学有深入的了解。本文采用粗颗粒分子动力学模拟方法,系统地研究了这种混杂材料在单轴压缩下的微观变形机制和力学性能,这些变形机制和力学性能是在应用中不可避免地遇到并进一步影响其功能的。考虑了影响纳米颗粒大小和体积分数的两个主要因素。研究发现,纳米颗粒填充石墨烯泡沫材料的本构关系由三部分组成:弹性变形阶段、内部再组织变形阶段和最终压实阶段,这与原始石墨烯泡沫材料的实验测量非常相似。有趣的是,由于纳米颗粒的尺寸和体积分数对微观结构演变的影响,这种杂化材料的初始模量和中间模量都受到显著影响。实验观察到的这种杂化材料的“间隔效应”得到了很好的重现,并进一步发现其对颗粒大小敏感。随着纳米颗粒尺寸的增加,微变形机制将从纳米颗粒被困在石墨烯片中,在石墨烯片上滑动,转变为聚集在石墨烯片外。超过临界相对粒径0.26,石墨烯片为主的变形模式转变为纳米颗粒为主的变形模式。混合系统压缩后的最终微观结构收敛为“三明治”和“随机堆叠”两种稳定结构。研究结果不仅有助于理解这种杂化材料在不同应用中的微观机理,而且有助于设计基于多孔材料与颗粒混合的先进复合材料和器件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号